Share This
Faculty and Staff Profiles

Anu Janakiraman

Assistant Professor

School/Division

Division of Science

Department

Biology

Office

Marshak Science Building MR616 (office) | MR620 (lab)

p: 212-650-8553 (office)

p: 212-650-8554 (lab)

f: 212-650-8585

e: anuj@sci.ccny.cuny.edu

w: View my website >>

  • Profile

    Dr. Janakiraman uses Escherichia coli as a model system to examine bacterial cell division. Her lab is characterizing key proteins that are required for the spatio-temporal localization of the FtsZ ring structure at midcell. The FtsZ ring serves as a framework for assembly of the rest of the division machinery.  Her laboratory is investigating the regulatory events that result in optimal FtsZ ring dynamics in vivo, by studying the molecular interactions amongst FtsZ ring stabilizers and inhibitors.


  • Education

    Postdoctoral, Mass. General Hospital / Harvard Medical School, 2006
    Ph.D. in Microbiology, University of Illinois at Urbana-Champaign, 2001


  • Courses Taught

    Biology 35000 - Microbiology
    Biology C0300 - Molecular Biology (Graduate Level) 


  • Research Interests

    In Escherichia coli, cell division requires the assembly of a large number of proteins at midcell. These proteins are involved in chromosome segregation, septum formation, and binary cell division. The earliest identified event in bacterial cytokinesis is the polymerization of a ring structure (FtsZ ring) at midcell by FtsZ, a tubulin-like GTPase. The FtsZ ring serves as a framework for assembly of the rest of the division machinery. The assembly dynamics of FtsZ are influenced by a large group of FtsZ-regulatory proteins that ensure the spatial and temporal integrity of the FtsZ ring. Our laboratory is investigating the regulatory events that result in optimal FtsZ ring dynamics in vivo, by studying the molecular interactions amongst FtsZ ring stabilizers and inhibitors. Using molecular biology, genetics, microscopy and biochemical techniques, we are examining not only how FtsZ assembly dynamics are maintained in E. coli but also the general molecular mechanisms that regulate spatial localization of bacterial proteins.


  • Publications

    Fixen, K.R., A. Janakiraman, S.J. Garrity, D. J. Slade, A. N. Gray, N. Karahan, A. Hochschild, and M.B. Goldberg. 2011. Extracytoplasmic signaling by a cell division protein in the establishment of bacterial polarity. (Submitted)

    Duand-Heredia J., H. H. Yu, S. De Carlo, C. F. Lesser, and A. Janakiraman. 2011. Identification of ZapC, a stabilizer of the FtsZ-ring in Escherichia coli. J. Bacteriol., 193 (6):1405-1413.

    Janakiraman, A., K.R. Fixen, A.N. Gray, H. Niki and M.B. Goldberg. 2009. Genome-scale proteomic screen identifies role for DnaK in chaperoning of polar autotransporters in Shigella. J. Bacteriol., 191 (20):6300-6311.

    Nie, L., Y. Ren, A. Janakiraman, S. Smith, and H. Schulz. 2008. A Novel Paradigm of Fatty Acid ß-Oxidation Exemplified by the Thioesterase-catalyzed Partial Degradation of Conjugated Linoleic Acid That Fully Supports Growth of E. coli. Biochemistry. 47(36):9618-9626.

    Janakiraman, A., J. Ikeda, D.G. Kehres, M.E. Maguire and J. M. Slauch. 2005. Transcriptional regulation of sitABCD of Salmonella enterica serovar Typhimurium by MntR and Fur. J. Bacteriol., 187 (3):912-922.

    Janakiraman, A. and M. B. Goldberg. 2004. Recent advances on the development of bacterial poles. Trends Microbiol., 12 (11):518-525.

    Janakiraman, A. and M.B. Goldberg. 2004. Evidence for polar positional information in E. coli independent of cell division and nucleoid occlusion. Proc. Natl. Acad. Sci., 101(3):835-840.


  • Additional Information

    Laboratory Personnel:
    Research Scientist: Eugene Rivkin
    Research Associate: Jorge Durand-Heredia

    Graduate Student: Guoxiang Fan
    Undergraduates: Helen Yu, Cheryl Mazzeo


<< Back To Directory