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An analytical solution for time-dependent polarized photon transport equation in an infinite uniform isotro-
pic medium is studied using a circular representation of the polarized light and expansion in the generalized
spherical functions. We extend our cumulant approach for solving the scalar (unpolarized) photon transport
equation to the vector (polarized) case. As before, an exact anguiar distribution is obtained and a cumulant
expansion is derived for the polarized photon distribution function. By a cutoff at the second cumulant order,
a Gaussian analytical approximate expression of the polarized photon spatial distribution is obtained as a
function of the direction of light and time, whose average center position and half-width are always exact. The
central limit theorern claims that this spatial distribution approaches accuracy in detail when the number of
collisions or time becomes large. The analytical expression of cumulants up to an arbitrary high order s also
derived, which can be used for calculating a more accurate polarized photon distribution through a numerical
Fourier transform. Contrary to what occurs in other approximation techniques, truncation of the cumulant
expansion at order n is exact at that order and cumulants up to and including order » remain unchanged when
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higher orders are added, at least as applied in our photon transport equation.
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1. INTRODUCTION

§tudy of the polarized photon transport has lasted for

- many years since the polarized photon transport equation
.. -(PPTE) was formulated by Gans [1] and by Chandrasekhar
"~ [2]. Recently, polarization analysis of light migrating in a

multiple-scattering medium has been applied to broad fields,
such as diagnostics of biological tissues [3-5], atmosphere
monitoring [61, and communications. One goal is to develop
optical tomography with polarization analysis to enhance
ability in image reconstruction of objects inside scattering
media. Because of the depolarization effect in a highly scat-
tering medium, scattered photons maintaining polarization
are those near ballistic and snake like, which suffer less mul-
tiple scattering. Therefore, a tomographic approach using po-
larized photons will automaticaily exclude multiple-scattered
diffusive photons which blur images. In order to build a
proper forward model for tomography using a polarization
analysis, a theoretical study of the propagation of polarized
light in scattering media becomes practically important.

In polarized photon transport, the intensity of polarized
light scattered from a scatterer along a certain direction is
determined by many scattering processes at different scatter-
ing planes consisting in a ray scattered from the scatterer and
rays incident to the scatterer from different directions. In
order to properly describe this process, Kuscer and Ribaric
[7] employed a circular representation of the polarized com-
ponents of light and an expansion by generalized spherical
functions [8] (or rotation matrices in angular momentum
theory [9,10]). The phase matrix, hence, can be analyticaily

_-expressed by the angular parameters of the incident and scat-

tered rays in fixed coordinates. Based on this formalism,
Herman and Lenoble {117 studied the asymptotic behavior of
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the polarized radiation field at great depths. Domke [ 12] con-
structed a system of singular eigenfunctions of the PPTE, for
which an integral equation and then a recurrence relation
were derived. However, to our knowledge, an explicit ana-
Iytical expression of the solution of the PPTE has not been
obtained. Numericai methods, mainly, Monte Carlo simuia-
tions, are the main tools in recent theoretical investigations
of light polarization in multiple-scattering media [5,13].

In this paper we derive an analytical solution of the time-
dependent PPTE in an infinite uniform medium. Based on
our results, inverse image reconstruction of objects inside a
scattering medium using polarized light can be developed.
The 4X4 phase matrix is assumed to depend only on
the scattering angle @ in the scattering plane: P(s,s)
=P(s-sy)=P{cos @). Under this assumption an arbitrary
phase matrix can be handled. By use of the circular repre-
sentation of polarized light and an expansion in the general-
ized spherical function [7,9], we extend our approach in
solving the scalar (unpolarized) photon transport equation
[14,15] using a cumulant expansion to the vector (polarized)
case. Terminating at second order, an approximate Gaussian
polarized photon spatial distribution is obtained for a given
light direction s as a function of time . Our solution for the
distribution in angle is exact, as are the first and second
cumulants in space at any angle and time, which guarantees
the correct central position and the correct half-width of the
spatial distribution. After many scattering events have taken
place, the central limit theorem claims that the spatial Gauss-
ian distribution calculated will become accurate in detail,
since all curnulants higher than the second approach small
values relative to the appropriate power of the second cumu-
lant. At early times, the spatial distribution is narrow: hence,
a distribution function, the mean position and half-width of
which are exact, may provide an adequate description of a
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polarized beam in the presence of noise and finite instrument
resolution. An analytical expression of cumulants up to an
arbitrary high order is also derived. Using these higher-order
cumulants, through a numerical Fourier transform, a more
accurate solution of the PPTE can be calculated.

The paper is organized as follows. Section II provides the
preliminary formula of the PPTE, the circular representation
of polarized light and the generalized spherical function,
which have been published in previous literature. In Sec. 1IE,
an exact solution of the angular distribution of the polarized
light is derived and an expression in the cumulant expansion
of the potarized photon distribution is presented. In Sec. IV,
by terminating the cumulant expansion at second order a
Gaussian approximate spatial distribution as a function of
light direction s and time ¢ is obtained, and the exact expres-
sions of the first and second cumulants are derived. In Sec.
V, an expression of cumulants up to an arbitrary high order
is derived. A brief discussion and summary then follows in
Sec. VL. In Appendix A, the expressions for coefficients
[Bﬁnnﬂ] ; in Eq. (15) are presented. In Appendix B, analytical
formulas for evaluating integrals in Eq. (42} are derived.

IL. CIRCULAR REPRESENTATION AND GENERALIZED
SPHERICAL FUNCTIONS

In this section, we summarize the description of polarized
light propagation in a scattering medium discussed in the
previous literature.

Considering a light beam traveling along a direction s, we
choose a reference plane through the direction of propaga-
tion. Two complex components of the electric field E, such
as Ey=a, exp(if)), the component parallel to the reference
plane, and E, =a, exp(i%), the component perpendicular to
the reference plane, can be used to describe a single coherent
beam. Four real components were introduced by Stokes [16],
each with the dimension of the square of a field or, more
precisely, an intensity. The four Stokes parameters are col-
lected into a four-element array I*=[1,0,U,V] [17]. The
component / is the total intensity:

I={ai)+{a) =(|E*+]EL|?). (1a)
The component Q describes a linear polarization;
Q=(a})—{apy={|E) I~ E. ). (1b)

The component {/ describes a linear polarization 45° relative
to the reference plane:

U={2a a4 cos 8)={|E(45°)]*~ |E(—45°)|%), (lc)
where
E(x45°)=2"V{ExE)).

The last component V is the difference between the intensi-
ties of right- and lefi-circularly polarized light:

V={(2aa;sin 8)=(|Eg|*~ |E|*). (1d)

where the right- and left-circular components of ficld are
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Ef=2"YYEFiE)).

In Eq. (1), 8= 6,— 3,; the angular brackets mean the avery
age over many waves with independent phases in a lighc.

beam.

To give further physical meaning to the symbols, we note
that the use of the Cauchy-Schwarz inequality leads to the
inequality

P=0*+ U2+ V2 (2)

For a coherent beam, which requires no averages in Eqs.
1(a)-1(d), the equality is automatically obeyed. The opposite
extreme case is unpolarized light for which

g=U=V=(,

and the total intensity 7 is totally incoherent. More generaily,
the difference between the left- and right-hand sides of the
inequality, Eq. (2), constitutes the incoherent part of the total
intensity.

The kinetic equation for a polarized photon distribution
function I(r,s,#) as a function of time ¢, position r, and di-
rection s, in an infinite uniform medium, from a point pulse
polarized light source, I'V8(r—ry)8(s—sp)8(¢—0), is
given by {2]

dl(r,s,t)/dt+cs- V X(r,8,6)+ p I(x,5.7)

= ,u.sf P(s.s' HI(r,s".t) —I(x,s,1) |ds’ |

+ 1O S(r—1y) 8(s—50) 5(t—0). @

The quantities in the Stokes parameter (SP) representation
will be marked by adding a superindex, for example, |
With a rotation of the reference plane through an angle «
=0 (in the counterclockwise direction, when looking in the
direction of propagation) around the light propagation direc-
tion, I varies as F'=L(a)L. In the SP representation, the
relation is given by

0 0

r ! 1«
o' 0 cos2a sin2a 0O Q
U'|71 0 —sin2a cos2a O||U @
V'iI 1o o o 1]tV

Usually, a meridian plane containing the z axis and the light
direction s is used as the reference plane for the description
of the polarization state {2.9] as shown in Fig. 1. In Eq. (3),
¢ is the light speed in the medium, w, is the scattering rate
(per unit time), u, is the absorption rate, and P(s,s") is a
4 x4 phase matrix, The following form of the 4 X4 phase
matrix [9] is used:

P(s.s') =L(m~ x)P(cos @)L(~ x"). 5)

where @ is the angle between light rays before and afted.

scattering, and the matrices L{~ ") and L(7— y) are those
required to rotate meridian planes before and after scattering
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FIG. {. Geometry of the scattering plane and the reference
planes related to the incident ray, s'(#’,¢"), and the scattered ray,
s(8,¢). The dark plane is the scattering plane. y is the angle be-
tween the meridian plane (s,z) and the scattering plane. ¥’ is the
angle between the meridian plane (s',z) and the scattering plane.

onto or from a local scattering plane, as shown in Fig. 1. The
intrinsic property of scattering mechanism is described by
the 4X4 scattering function P(cos®), which involves
cos @=s.5".

It is convenient to use a representation of the polarized
Hght in which E(«) is diagonal, rather than Eq. {4). A cir-
cular parameter representation (CP) was first proposed by
Kuscer and Ribaric [7]. Later, a more precise definition of
+*the CP, which matches with the tnitial definition of polarized
light in the SP representation by Chandrasekhar [2], was pre-
sented by Hovenier and van der Mee [9]. Hercafter we use
the definition of the CP in Ref. [9], which is given by I
=[Is.dg ] g0 5], where To=(I+V)/2, [_o=(I—V)/2, I
=(Q+il)/2, and I_,=(Q—il)/2, or FP=TI*, with

o 1 i 0

ilt 0o o 1
=311 0 o -1 ©)

0O 1 —-i 0

In the CP, a rotation of the reference plane through an angle
o around the light direction causes [, to be multiplied by
exp(—ima). Notice that I, and I 4 actually have the same
rotational property. For the phase matrix, the transform PF
=TP*T"! is given between two representations.

In the CP, it is convenient to expand the phase matrix P°F
using generalized spherical functions (GSF's). The general-
ized spherical functions, which are related to irreducible rep-
resentations of the rotation group on ihree nonzero Euler's
angles, are defined as follows [3],

For Izsup(|m|,in|) and p=cos 6,

me”(#):Aiz,n(l —M)“(fl‘m)."?.(l+’u)—(n+m).’2

{—n

Xm[(l*ﬂ)’_"'(l+u)’+m], (7)
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with

172

, (=D (I—m) (L))
w2 —m)t | (I+m)(I—n)!

This function is directly related [9] to the rotation matrix
dl (8 in angular momentum theory [10] by d' (6)
=(i)""™P! (cos 6). Some symmetry propertics of me( M)
are an_n(,u,) = Pi'm(p,) = P‘T_m‘_n(,u,). The orthogonality re-
lation for an'n(,u,) is given by [8,9]

I , 2
(—pyme f PPl @)dp=57 80 ()

The phase matrix in the CP can be expressed using the gen-
eralized spherical functions [7,9]. For notational simplicity,
in the following the quantities without a superindex are un-
derstood to be in the CP. Denoting s={(u,¢) and s
=(u'.¢'), the addition theorem of GSF's [9] is given by
(sec Fig. 1)

i
m.i

exp(imy) P, ,(cos®)expliny’)

!
== X (= 1P ()P ()

Xexp[—is(¢—$")]. ©)

Using this addition theorem of GSF's, the variables y, ',
and ® in Eq. (5) can be eliminated, and the components of
the phase matrix in the CP can be expressed using the angu-
lar parameters of the incident and scattered ray in fixed co-
ordinates. If we expand elements of the CP phase matrix in
the scattering plane, P, (cos @), by GSF’s,

1
Palcos®)= i 2{ pf,man_H(cos ),

then, using Eq. (9), the 4 X4 phase matrix in fixed coordi-
nates can be written as

P, dipn’ ')
!

1
= am 2 P 2 (S D P ()P (0

Xexp[ —is(d—¢")], (10)

with indices m, n=2,0,—0,—2 and [=sup(jm/|,|n]).

The coefficients p,’m,_ provide an intrinsic description of
the scattering mechanism. In most useful cases, the coeffi-
cients ph have the properties [7,9] that (i) p!, and P
are real, (i) p',,=p’, =p", .. and (iii) Pho=[p_,]* (the
asterisk means complex conjugate}. Therefore, for each [
=2, there are six independent real elements péo, plzz , pé_ﬂ,
Ph_s, Re[phe], Tmlpho]. For I=0 or 1, only Pog and ph_,
are nonzero. These numerical coefficients were calculated
using Mie theory for some examples by De Rooij and van
der Stap [18]. These p! , together with x, and g, are
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parameters that describe the nature of the scattering process
and are treated as known in our solution of the transport
equation.

HOI. DERIVATION

Having the above knowledge, we analytically solve Eg.
(3) in an infinite uniform isotropic medium. Using a proce-
dure similar to that discussed in Refs. [ 14] and [15], we first
study the dynamics of the photon distribution in the light
direction space in the CP, F(s,sq,1), which is a vector of
four components, on a spherical surface for s of radius 1, The
kinetic equation for F(s,s;,?) can be obtained by integrating
Eq. (3} over whole space r. The spatial independence of u,,
g, and P(s,s") retains translation invariance. Thus the in-
tegral of Eq. (3} obeys

(;F(S,S() ,t)/é’t+ ,u,aF(S,SO ,I)

+,us[F(s,so,t)— J P(s,s")F(s',sp,1)ds’
=10 5(s—s,) 5(r—0). (1

Since the integral of the gradient term over all space van-
ishes, as shown in Ref. [14], if we expand F(s,s;.7) in
GSF's, its I components should not be coupled to each other.
The mth component of F(s,sy,#), with the initial pelarization
in unit ny state, can be expanded in GSF's in the following
form:

Frong(:50:1)= 20 Frup (1) 2 (= 1) Py (1) P (120)

Xexpl —is(d— do)lexp(—~ pat), (12)

with m, ny=2,0,—0,—2, [=sup(im|,{n}). When s, is set

along the z direction and the initial reference plane is set as

the x-o-z plane, Eq. (12) specializes to

>,
7

ano(s,i,f) = (t}Pm no(#‘)exp( "‘5”09’5)33(13( _.u‘a't)'

(13)

Substituting Eq. (12) [or Eq. (13)] into Eq. (11), using the
expression, Eq. (10), of the phase matrix, and the orthogo-
nality relation of GSF's, Eq. (8}, an analytically solvable
equation for F ﬁ,mo(t} for each [ is cbtained:

I.FIO

dFt (ndr=2, TIL FL (1),

mn mn HHD (143.)
with 1! =u,[8, ,—ph./(21+1)]. The initial condition
F m(s,so,tﬂ())=5,?1!,105(5**&,) and the orthogonality rela-

tion, Eq. (8), lead to
(r=0)=

O (211 Y. (14b)

”If!

The solution of Eq. (14} can be expanded in terms of eigen-
states:
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mnu(t)_ —2 [an(]} 3XP(“7\£f)a i=1.2,34,
with the eigenvalues given by
Ni= (1/2)[ (Tgp+ T3, = Iy _o*115 o)

[(Hco sz—no 0+H 2)2

+ RE(II'_Z(}) 2
16[ - Im(Hzo)}

1”2
} , (16)

for i=1,2, and for {=3,4, the sign+ before square brackets
in Bg. (16) is replaced by —. The constant coefficients
[Bfrmo] ; can be analytically determined using standard linear
algebra from the initial condition, Eq. (14b). A detailed ex-
pression for [Bﬁrmo],- is presented in Appendix A,

Equation {12) [or Eq. (13)], combined with Egs. {(15) and
(16} and the coefficients [Bfm,n} ; in Appendix A, provides an
exact CP solution in the light direction space. In the SP rep-
resentation, we have

F%(s,50,1)=T"'F(s,50.1)T. (17)

It can be proved that all components of FS(s,s,!) are real
numbers. The mth component [ m=1,0,U,V] of the angular

distribution function in the SP representation, with the 1mtlag;.:::~

polarized state IF™?, is obtained by ¢ i
F3%(s,50,0) =[F*(s,50,) F*9], . (18)

Equation {17) serves as the exact Green’s function of polar-
ized light propagation in the light direction space. Since in an
infinite uniform medium this function is independent of the
source position ry, requirements for a Green’s function are
satisfied: especially, the Chapman Kolmogorov condition is
obeyed:  Jds' FOF(s".s",t— 1t VF(s s,t" — 15) =FF(s" 5,
—1g). In fact, in an infinite uniform medium, this propagator
determines all time evolution of polarized light, including its
spatial distribution. because displacement is an integration of
velocity, c¢s(f), over time. The mth component [m
=[,0,U,V] of the photon distribution function in the SP
representation, [ip(r,s,t). with the source located at ry=0,
the initial direction sy, and the initial polarization I, is
given by

: sp
1§P<r,s,r)=<5(r—cfos(f)d:'>5{s(z)-s)> ., (19)

where ()f,‘lp means the mth component of the ensemble
average in the light direction space in the SP representation.
The first & function ensures that the displacement r—0 is
given by a path integral. The second & function assures the
correct final value of the direction. Equation (19) is a fory™

mally exact solution, but cannot be evaluated directly. We

make a Fourier transform for the first & function in Eq. (19),
then make a cumulant expansion [19], and obtain
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1
Iip(r,s,r)zFip(s,so,r)WJ‘ dqexp{ iq- r+2

X < fﬂdrk"'JOdtl T[Sjk(fk)' "Sj,(fz)]>
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—zc)k

> ,E g, q;
1

f1
Ix

Sp
] ; 20)

Clin

where 7' denotes time-ordered multiplication [20] and F3F(s,sq,7) is given by Eq. (18). In Eq. (20) the index ¢ denotes a
cumulant, which is defined in textbooks of statistics [21] and statistical physics [19]. As for an arbitrary random variable A, we
have (A).=(A), (A7), =(A®)—(A)A), and a general expression relating (A") and (A"}, , which is given by

(AYy=i X (ﬁ“?)" l'((f;?c)f{__%

i,.ig,... i2

Hence, if (A%, i=1,2,...

,k, have been calculated. (A"),, i=

((A’% :

Py ) '"a(i_il—ZiZ_'“_njn_'")x (21)

1,2,. ...k, can be recursively obtained and conversely [19].

The kth moment (the term without index ¢) which, according to the cumulant expansion theorem, is related to

fdrrg -
given by

? t SP
H fﬂd[k'“fodtl T[Sjk(fk)"‘sj,(fl)]H

i3

r jllflp( r,s.t). This moment can be evaluated using a standard time-dependent Green's function approach, which is

== dt dty -1 dt ds”‘)f ds(k_i)“'f ds VFSP(s s s — 13510
F;‘;P(s,so,t)H PR I PO ¢ WS,

where the abbreviation *‘perm’ means all k! —1 terms cb-
tained by permutation of {j;}. i=1,....k, from the first
term.

In Eq. (22), F%(s'? sU=1 ¢,—¢, |} is given by Eq. (17).
Since Eq. (22} is obtained using a Green’s function approach
without making any approximation and Eq. {17) is an exact
expression of the angular Green's function, Eq. (22) provides
an exact formula for the kth moment. If we are able to ex-
actly evaluate Eq. (22} up to kth order, through Eq. (21), we
can obtain the exact cumulants of the distribution up to the
kth order.

IV. GAUSSIAN APPROXIMATION
OF THE DISTRIBUTION

Terminating Eq. (20} at second order of the cumulant and
setting s in Cartesian coordinates, integration over ¢ in Eq.
{20) can be analytically performed, which leads to the fol-
lowing Gaussian approximation expression of the polarized
photon distribution. When the initial sy is set along =, it is
given by

F%(s,2,1) 1
[fnp(r,ssf)_ (G {detDSP]”ZexP [DSP) E]cv,@
X(}’ _<Ra> )(rﬁ (R,ﬁ'>m ]’ (23)

3 - k—1 N
5 FSP(s¥) gtk E)Jk“tkﬂ)SﬁH)"'FSP(S{Z),S“)Jz—fl)S}f)FSP(S(”,So,h—O)ISP“”

+ (perm.) } , (22)

i3

with m=1,Q.U,V and &, B=x,v.z. In Eq. (23), (R ,)3F rep-
resents the position of the average center of the distribution,
and {D,Snp}aﬁ is related to the half-width of the spread of the
distribution, which is given by

(D) 1ap=T{RaR gy —(Ra)u(Ra)V2.  (24)

(R,)% in Eq. (23) and (R,Rp) in Eq. (24) can be evalu-
ated using, separately, the first order and the second order of
Eq. (22):

: sP
(R“ i3 < J- drfs(!(t’)>
0 Hi

c ! ' rgSP, !
TFN(sa0) fodt f“’“‘" (s.8,0=1")s,,

X FSP(s’ ,i,r’)IS*’m)} (25)

m

and
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sp ' t SP
(RuR ) £c2< Jlar fodx"T{sa(rnsﬁ(r")])m -
|

where (t.c.) means that the second term is obtained by ex-
changing the indices « and £ in the first term. As discussed
at end of last section, Egs. (25) and (26) provide exact ex-
pressions for evaluation of the first and the second moments,

In evaluation of Egs. {25) and {26), it is convenient to use
the components of s in a spherical harmonic basis:

s=[s51,50,5 -1}

=[—2""sin e ¢, cos §,+27 Zsin B ?], (27)

and first calculate the corresponding quantities in the CP.
Hence we write Eq. (25) as

i
(Rol=psvry| 2 VT (RNTE®) - (28)

.

with a=x,v,z and j=1,0,~1, the indices of the spherical
harmonic basis. {/ is a matrix for the transform from a
spherical harmonic basis to a Cartesian basis, 5,=U,;s;,
given by

_2—"1/2 0 2*11’2
U=t 27 o 27 (29)
0 1 0

{R) in Eq. (28) is defined in the CP as

t
(Rj)m,,Dchodt' f ds' >, Fo(s,s' 0=t )5 Fpy (8"2,07),
(30)

where F,,,(82,5,f;~f) is the exact angular Green's func-
tion in the CP, Eq. {12). Similarly, Eq. (26) is writien as

12

[ ({—m¥Yl—m+1)
(21-1)21
(I=~m)(1+m)|"?
(l_hal’ma—jlhm_j): {_(—ZT_IT
(I+m)(I+m+1}]"?
| (2{—1)2!

with the row index (from above) j= 1,0,

|

t '
J dt’f{ dt”j ds’f ds" F¥(s,s',1—1t")s FF(s' 5" 1’
0 0

PHYSICAL REVIEW E 63 016606

-

c
SP ~
E(8,2,1)

")SEFSP(S” 5 H)ISP{O)

+(t.c.)} , (26)k o

i

E E (UﬂJlUﬁj

(RaRghn = [
B F‘;P s,2 , “ _,'2

+U

ajy

Uﬁj,)T"l(RhRjJTiSP(m} . (31)

m

where (R; R; ) is defined in the CP as

r ¢!
=l ' " t #
(R R; Yy =C La’r JO dt fa's fds

X > Fop (88 0= 1")s]
na < =

H)Sl'-' F (SH' 5 H)’

XE Fn,n (Sf " —

ity

(32)

where j, and j, are spherical components, 1, 0, —1.

In the evaluation of Egs. {30} and (32), a recurrence rela-.
tion of GSP’s is used, which is directly derived from angulzué'_
momentum theory [10]. Defining s;=u;e”?, with j=10,
—1, we have

{cos B} = 'ij {L,1,m 0l +h,m)

?71 M

X{L L, 2|+ Rzt

mazrj

{cos 8},

Jh=+10,—1, (33)

with y-,=7i and yo=1, and {I,l5,m ,my|L, M) are the
Clebsch-Gordan coefficients in angular momentum theory
[10], given by

(I+myl—m+ 1)1 (+m)(l+m+ 1)1 7
20(1+1) { (20+2)(2{+3)
m? " [(l+m+1)(l—m+l) 12
{{i+1) (I+1)(21+3) ’
(I—m)({+m+1)]1 (I—m)(l—m+1)]"
20(1+1) [ (20+2)(21+3) }

-

— | and the column index {from left) = 1,0,

(34)

- [. These recurrence relations of GSF's
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were provided in Ref, [8] with some misprints. Substituting Eqgs. (12) and (13) into Eq. (30), and using Eq. (33) and the
orthogonality relation of GSF’s, Eq. (8), integrations over ds’ and dt’ in Eq. (30) can be analytically performed. When the

final direction s==(8,¢), we have

<R1>m"o CE Pm n 7_,(COS B)e*i("o—j)rﬁ,yj

21—-R)+1
X2 2 =D (0= kL OlLa)(I =k, Lng, = j| L= ), (35)
noh 47 o
with n=20,—-0,—2, hi=+1,0,—1 and
exp( A7) —exp(—\ir) o
D iung =2 (B By S exp(—pat), ij=1.2.3.4. (36)
! K

Similarly, integrations in Eq. (32) can also be analytically performed. We have

(Rjz “)mno_czz Pm y—ig “(cos B)e"'{”riz“mcbyjzyjlz 2 >3 ;Tr

2l—hy—h ) +1

ny Rry hy Ny

Lt B
xE, ,,’n' g (D{1=ha g Ol na) (I =R, Ling—j (= jalLing =1 = J2)
X(l_hz_hl,l,nl,oll_hz,f?1><l_hz_hi,i,ng,_jill_hz,H{)_jl>, (37)

with My, f12=2,0,_0,_2, hl ,I’lz: + 1,0,_ 1, and

[le IZ[
m Wy 00y SR

o01=2 (B JUB, LB, L,

exp( — )\1 fam h‘t} - exp(— }xr)

—hy

exp{ — ?\ “ry—exp{— )\t}

(7\1 Rz 7\1 iy hl)()\,!

Up to now, algebraic analytical expressions for the first
cumulant (the average center of the distribution) and the sec-
ond cumulant (the half-width of spread) have been derived.
Equations (36} and (38} involve the related scattering param-
eters: g, and Hf,m [defined after Eq. (14)], through ?\f- in
Eg. (16) and [ano]I in Appendix A, and the absorption
parameter, &, . Thus they determine the time evohation dy-
namics. The final light direction s appears as an argument of
the generalized spherical harmonics in Egs. (35) and (37).
Substituting Eqs. (18), (35). and (37) into Egs. (28), (31),
and then Eq. (24), the first and second cumulants in the SP
representation are obtained as functions of s and ¢ The dis-
tribution function of polarized light is then expressed by Eq.
(23), with Eq. (28) for the average center pasition and Eq.
(24) for the width of the spread. Equation (23) produces the
mth Stokes component of polarized light at position r, with
light direction s, as a function of time ¢, initialed by rz=0,
so=%, and polarized state FM® in an infinite uniform me-
dium.

. It is easy to reduce the above solution to the scalar (un-
‘polarized) case by considering only the /;, component. Be-
cause (/,1,0,0//,0y=0 in Eq. (34), Egs. (35) and (37) can be
greatly simplified. Also, Eq. (15} is reduced to (2{+ 1)exp

= hn—fzi) (}\1 By ?\-i h’“hl)(hl

= EXpl — u,f). (38)
y *)

(— I oot ¥4 in the scalar case. Notice that the associated
Legendre function P ()= ()" (I +m)yt(l
—m)!]mPf)’m( ); our formula reduces to that given in Ref.
[14] in the scalar case.

V. DISTRIBUTION FUNCTION ACCURATE UP TO AN
ARBITRARY HIGH-ORDER CUMULANT

In order to calculate the polarized photon distribution
function with accuracy up to an arbitrary high order, it is
more convenient to set all spatial and angular vectors in the
spherical harmonics basis, similar to Eq. {27), and to evalu-
ate Eq. (22) via the CP:

. ( Sp
“ fodrk--- fodtl T{s_,-grk)---sj,(n)})L

1
- TG, jy ) TSRO
m[ (Jineennfp )TISEO]
(39)
with jy,..../,=1L0,— 1 and G(j,....j.7) given by
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3 t I
G(jk,_“,ji’f)z{"- dfkf kdtkmi"'J dtlJ. ds“‘}J ds{k—l)...j dst?
G 0 0
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><F(s,s("‘),t—tk)sﬁf)F(s(k),s(k*”,tk— ty s D -F(s(z},s(“,rz—tl)sf,-:}F(s(“,so .1, —0)+perm. |,

where F,,(s0,s¢" P 1,—t, ) is given by Eq. (12). Using the GSF recurrence relation, Eq. (33), and the orthogonality
relation of GSF’s, Eq. (8), the integrals over ds'®---ds'!’ in Eq. (40) can be analytically performed. We obtain, when the initial

sq is along z and the final s=(8, ), that

k
(GG d 158 by = { 2 Py yxt_ 008 e)exp[ - f( no= 2 jf) 4

.....

" g
L TN
XHm;L ,.i (I)H l_E hk—fﬁ-hlank-—q&"ivo
k S E Ayt f=1 s

k—g

E
X < [_;zx hk—fﬂ»lﬂn““fgl JpsTIk—g+1

with nf22.0,-0,—2 and hf= 1L,0,—1, f=1,2,... .k, with
4 4

() =exp(—pgt) 2

T
iper=1 =

My LN

H

i IRy
'El [Bm"k]ik+§[B

Pt — 1

Tie—1

(40)

: 2(1-35 b +1
}:[l 7’1‘;}2 LIS LY

e ny Ry ftg 4

g-1
f‘fZ{ hk—j‘+lsnk~g+l>

g—1 k—g+1

l—;i B popsmpg™ JZ; jfﬂ-i-perm,

(41)

TR T e
i [Bn],,of 1,

£ "k f2 1 I*flk f—zj,..:l.’l;{_lr+;
X Odfk . dp . diyexpl N, (r—g)]expl =X, (fk““fk—ﬂ]“'exp[“?\,-; {ti—0)].

Note that all ensemble averages have been performed. Equa-
tion (42) involves integrals of exponential functions, which
can be analytically performed. An explicit expression for
evaluating integrals in Eq. (42) is presented in the Appendix
B. Equation (42) involves all related scattering and absorp-
tion parameters and determines the time evolution dynamics.
The final direction of light, s, appears as an argument of
GSF's in Eq. (41). Substituting Eq. (42) into Eq. (41),
through Eq. (39), which transfers to the SP representation
and introduces the initial polarized condition, and using a
standard cumulant procedure, the cumulants as functions of
angle s and time 7 up to an arbitrary kth order in the SP
representation can be recursively obtained. The final position
r appears in Eq. (20), and its components can be expressed
on a spherical harmonics basis, similar to Eq. (27). Then,
performing a numerical three-dimensional inverse Fourier
transform over q, an approximate distribution function
I;ip(r,s,r_) in the SP representation, accurate up to kth cumu-
lant, can be calculated.

VI. DISCUSSION

It Sec. [Il, we derived an explicit expression of the po-
larized photon distribution function, which guarantees the
exact average central position (the first cumulant} and the
exact width of spread (the second cumulant). Moreover, with

@

an increase of collision events or time, the distribution ap-
proaches accuracy in detail since the higher cumulants be-
come relatively small compared to the appropriate power of
the second cumulant. If we examine the spatial displacement
after each collision event as an independent random variable
Ar;, the total displacement is ZAr; (i=1,...,N), with N
the number collision events, which can be estimated by
t ;. If we define Y=(N) “*TAr;, the central limit theo-
rem claims that if N is a large number, then (Y7), /{Y?),
~Ni7M2 =3 Therefore, the sum of N variables will have
an essentially Gaussian distribution. At early times, the pho-
ton’s spread is narrow: hence, in many applications the de-
tailed shape is less important than the correct position and
correct narrow width of the beam, because of the finite reso-
lution of detection devices. In case a more accurate distribu-
tion at early times is needed. Sec. IV provides formulas for
analyticaily calculating the higher cumulants up to an arbi-
trary kth order. Then, performing a numerical three-
dimensional Fourier transform, the distribution function ac-
curate up to the kth order cumulant approximation can be
obtained.

In summary, we present an analytical solution of the time-
dependent polarized radiative transport equation in an infi- ;¢
nite uniform isotropic medium. The Green’s function for the %
angular part is exact. Using a cumulant expansion, we can
analytically calculate the spatial cumulants up o an arbitrary
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high order. By terminating at the second order, we have de-
rived an explicit expression of the polarized light distribution

o7, function, This expression is quantitatively accurate up to the
.+ second order cumulant approximation. Namely, the center

position and the half-width are always exact and not modi-
fied when higher-order cumulants are added. The central
limit theorem claims that after enough collision events, all
cumulants higher than second approach small values, and the
Gaussian spatial distribution calculated approaches accuracy
in detail. OQur results are given in terms of a distribution with
coefficients that can be calculated algebraically, with moder-
ate effort at the second cumulant level and additional effort
to induce the third- and higher-order cumulants. This analyti-
cal solution provides a background distribution function for
further study of optical tomography using polarized light.
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APPENDIX A

In this appendix we calculate {Bﬁmg]i in Eq. (15). Substi-

tuting Eq. (15) into Eq. {14), we obtain a set of linear homo-
geneous equations

2 [Hmn )\ialn.n][giznn]fzo’ (Al)

where eigenvalues hﬁ (i=1,234) are given by Eq. (16),
These equations, however, are not linearly independent
Adding the initial condition, Eq. {14b), given by

4 4
Iy fq

PHYSICAL REVIEW E 63 016606

2 [Boun = By (A2)

the unique solution of [ B! ], then can be obtained. For
o
given ng and [, 16 components of {Bfmlo} ; construct a column

vector in the space of the direct product of { Xm. Combining
Egs. (Al) and (A2) in iXm space, we obtain the following
matrix equation:

AB=C. {A3)
A is a 16X 16 matrix:
AiXm,jszm[an )\ 5 5mn+6m n:E' (A4)

B and C are 16X1 column vectors: BJ;X,,=[BL,ID]J,- and
Civm= 8,,1_"0. Here A and C are given, while B is unknown.

Equation (A3) is a standard form of a group of 16 linear
equations. The solution is given by

BiXm=Ai><m'{de’t(A)s (AS)

with A;.,, is obtained by replacing the ¢i X m)th column in
the determinant of A by the ¢olumn vector C.

APPENDIX B

In this appendix, we derive an analytical expression for
Eq. (42) to kth order. By defining

kg g
bgﬁ)\zﬂzf:lhk—f—f-l] ?\[: ‘f 1 hkvf-«l], g= L L ,k,
' (B1)

Eq. {42) can be written as

Ho g ()= EXP( = pa1) > - E [B.mi}fm[ BT L, 1B B~ -t Y, exp(— 7\1 L OFH,  (B2)

szl

with

I f I
F(k)(t)=j dfk ebkrkJ. dtk"i ebk—""“l"'J df] eblrl.
0 G o
(B3)

It is easy to directly calculate Eq. (B3) for a few low &
orders:

bt i

FOy=S

b, B"}' , (Bda)

Rpfy Ry

(b +bs)t Bat i

e

F (= + B4
O 75y biby ' Brvbg, B

e(bl+b2+b3}r e(bz+b3)r

FOYn=
bl(b1+b3)(bl+b2+b3) bbb+ b3)
e 1

T B Fbbobs (b 4537 b3) {0y by)by
(Bdc)

In each step of integration, the difficulty is in determining the
constant term. In the following we prove that this term is
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| S
' {B6)
Fi ()= Ldr’ et FEI(t"). (B5)
Using integration by parts to Eq. (B5), we obtain Recursively applying Eq. (B6), we obtain
|
F{")(t)— e’ F(k ”(I) — Mp(k—z)(r}
bi(bytby—y)
+---+(_1)f o bpt ot bt kafil(t)
bilbptby_ ) (bptby +tbi_p)
+___+(_E)k—l elbitby—y oo ®7)

Bo(byt by

N

Equation (B7) provides a formula to recursively evaluate Eq. (40} up to kth order. Also, Eq. (B7) produces the above-
mentioned constant term. An explicit expression of Eq. (42) can then be written as

4 4
Lig .. [ u N
mrzi. ;:ln (r)=exp(— l“at)lkgil t; {Bm"k}‘kﬂ[ nkn:{ [Lk E nlno ie— z+1]!l
k b
(= D expl S5t sont]
Xexp(— }\,Hl 20 £ (B8)
i=

with bk+ IEO, and

g
L}g)=f2> bf’ j"{g, or
=

where b, is defined in Eq. (B1).

k g) '

i

L(g)— Z bf’ J>g7
f=g+

B9)
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