Continuous-wave and passively mode-locked operation
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Continuous-wave and mode-locked Cr'":Ca,GeQ, lasers that use a fiber laser pump source were dem-
onstrated. The continnous-wave Cr*":Ca,GeO, laser yielded a maximum output power of 415 mW at
1420 nm and a tuning range of 1335-1492 nm. With a saturable-absorber mirror, 60-ps pulses and
116-mW maximum output power were generated from a passively mode-locked Cr**:Ca,GeQ, laser,
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1. Introduction

During the past several years, a number of Cr**-
based laser crystals have been grown and investi-
gated for laser operation. Only a few of these efforts
have produced laser-grade materials. Interest in
the development of new lasers activated by Cr** ions
followed the demonstration of the Cr**:forsterite
(Cr'":Mg,8i0,) laser by Petritevié et al. in 1988.1
Cr*":YAG laser operation was also demonstrated in
19882 although at that time the laser action was
ascribed only to impurity color centers, Cr*":
CayGeQ), was demonstrated in 1996 with potential
laser tunability in the 1.3-1.6-pm range.® Develop-
ment of new host crystals for the laser active Cr*™ ion
has been prompted by the deficiencies of the hosts
that are now available. In particular, Cr:forsterite
suffers from the introduction of Cr®' and Cr?* ions
into the crystal lattice, which results in a low figure of
merit, typically in the 20—40 range, and of Cr:YAG
crystals, which require the presence of a charge-
compensating codopant. In addition, nonradiative
relaxation of the upper laser level is significant in
both Cr:forsterite and Cr:YAG at room temperature.

All the authors are with the Institute for Ultrafast Spectroscopy
and Lasers and the New York State Center for Advanced Technol-
ogy in Ultrafast Photonic Materials and Applications, The City
College of the City University of New York, New York, New York
10031, B. Xu (bingxu@scisun.sci.ceny.cuny.edu), J. M. Evans, V.
Petricevie, and R. R. Alfano are with the Department of Physics of
the latter institution; 8. P. Guo and 0. Maksimov are with the
Department of Chemistry.

Reeeived 5 April 2000; revised manuscript received 5 June 2000,

0003-6935/00/274975-04$15.00/0

© 2000 Optical Society of America

Recently, all-solid-state continuous-wave {ew) Cr**:
Ca,GeO, lasers that use a semiconductor diode de-
vice and a fiber laser as the pump sources have been
reported.*® The development of a compact, stable,
diode- or fiber-pumped ultrashort-pulse laser source
i the 1.3-1.6-pm wavelength range has several
practical applications in medicine, telecommunica-
tion, fiber sensing, and semiconductor devices.

To accomplish stable mode-locked operation in vi-
bronic lasers similar to Cr*":Ca,GeQ,, various
groups of researchers have used intracavity
quantum-well-based semiconductor saturable ab-
sorbers. These devices have acquired various
names, including saturable-absorber mirror (SAM),
semiconductor saturable-absorber mirror, and satu-
rable Bragg reflector. The mode-locked perfor.
mance of lasers that incorporate such devices has
been characterized by high tolerance to cavity per-
turbations and is an inherently self-starting and sus-
taining mode-locking technique. Several solid-state
lasers including Ti:sapphire,® Yb:YAG,” CrLiSAF 2
Nd:¥YVO,, Nd:YLF,® and Cr:YAG, have been mode
locked by use of such semiconductor devices.

In this paper we report on two modes of Cr™:
Cay,GeOy laser operation: by a cw oscillator and by
a passively mode-locked laser, The cw laser was
tunable in the 1335-1492-nm speciral range. With
a SAM, a passively mode-locked Cr'":Ca,GeO, was
constructed. Stable mode-locked operation has been
observed over a tuning range of 1380-1460 nm.,

2. Experiments

First we present the results of cw operation of a fiber-
pumped Cr*":Ca,GeO, laser. The cw Crt':
Cay,Ge0Q, laser resonator consisted of a standard
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Fig. 1. Output characteristics of the Cri7:CayGe0, laser: (a)
slope efficiency for 7.5% (squares}, 2.5% (circles), and 1% (trian-
gles) output coupling; (b} tuning range with the 1% output coupler.

three-mirror I-fold cavity formed by twe 10-cm
radius-of-curvature mirrors and a flat output coupler.
The crystal used in our investigation was 6 mm long,
with a rectangular cross section. It was cut for light
propagation along the crystal ¢ axis, with polariza-
tion parallel to the & axis. The faces of the crystal
were polished parallel flat—flat and were coated with
a broadband antireflection layer centered at 1.45 pm.
This Cr*":Ca,GeO, crystal absorbed 90.5% of the
pump light. To achieve a good match between pump
spot size and cavity mode size we used a 10-cm focal-
length lens to focus the pump beam. To improve
laser efficiency, we implemented thermoelectric cool-
ing of the laser crystal, reducing the operating tem-
perature of the active region of the crystal to 15 °C.
N, gas was passed over the crystal’s faces to prevent
moisture condensation. A single birefringent crys-
talline quartz plate was inserted into the cavity for
tuning purposes. A fiber laser (SDL FL-10-3911) ca-~
pable of delivering a maximum of 9 W of power at 1.1
um in a near-diffraction-limited beam was used as a
pump source that falls within the broad absorption
band of Cr**:Ca,GeO,.

The ew Cr'":Ca,Ge0Q, laser operated at 1430 nm
without a tuning element inserted into the cavity,
and a maximum ocutput power of 415 mW was ob-
tained for an absorbed pump power of 2.5 W by use of
an output coupler with 7.5% transmission at 1.43 pm.
The lowest measured threshold was 120 mW of ab-
sorbed pump power when a 1% output coupler was
implemented. The threshold increased to 0.15 and
0.23 W for 2.5% and 7.5% output couplers, respec-
tively. The maximum optical slope efficiency of 21%
was obtained for a 7.5% output coupler.

Figure 1 shows the laser output power as a function
of absorbed pump power for the Cr*":Ca,GeO, laser
operating with 1%, 2.5%, and 7.5% output couplers.
The output polarization parallel to the crystal b axis
ig the result of the strongly polarization-dependent
gain of Cr*":Ca,GeQ,. At approximately 1.5 W of
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Fig. 2. Schematic diagram of the passively mode-locked Cr**:
CayGeO, laser cavity incorporating the SAM device (Mg). M,
mirrors; Ly, lens.

absorbed pump power the output laser mode changed
from TEMg, to multimode. The maximum TEM,,
output power generated was 305 mW. With the in-
gertion of a birefringent plate, a tuning range of
1335-1492 nm was measured for the Cr*":Ca,GeO,
laser shown in the inset of Fig. 1. This laser oper-
ated with a 1% output coupler, and the absorbed
pump power was 3.0 W.

The broad tunability of Cr**:Ca,GeO, lasers indi-
cates their potential as sources of ultrafast light
pulses. If the entire laser bandwidth of Cr*":
Ca,GeO, were utilized, pulses as short as 13 fs would
potentially be attainable. To investigate mode-
locked operation we used a SAM in the Cr*":CayGeQ,
resonator, as shown schematically in Fig. 2. For
mode-locked operation, an X-fold cavity was built
that was similar to that of a standard Ti:sapphire
laser with a cavity waist of 40 pm inside the Cr*™:
Ca,GeQ, crystal. The active crystal was the same
as that used in the cw investigation. A 1% output
coupler (M,) was used in this Cr**:CayGeO, laser.
To obtain sufficient bleaching of the saturable ab-
sorber for pulse formation we used a concave mirror
(M,) with a 20-cm radius of curvature to reduce the
incident beam size to approximately 80 pm upon the
SAM. The separation between the mirror and the
SAM was ~9.5 cm. The total cavity length was 98
cm, yielding a pulse repetition rate of 153 MHz.

The SAM structure used in our experiment was
similar in design to that used by Hayduk et of.,** with
a modified geometry for operation at a center wave-
length of 1.43 pm. Grown by molecular-beam epi-
taxy upon an undoped (100} GaAs substrate, the
SAM consists of a distributed Bragg reflector with
24.5 periods of 123-nm AlAs low-index—104.9-nm
GaAs high-index quarter-wave layers for 1.43 pm.
A 21.9-nm-thick Al ,sIngs0As buffer layer was
grown between the partial Bragg stack and a double
quantum well. The double quantum well in the
saturable-absorber region follows the buffer layer
and has the following structure: 6.5-nm
Gag 47Ing 53As well-8-nm Al 45Ing 50As barrier—6.5
nm GagssIngs;As well. The entire structure is
capped by a 65.8-nm-thick Alj 45Ing 50As layer, so the
total thickness of the buffer—double quantum well—
cap layer was a 1.43-pm quarter-wave layer complet-
ing the Bragg reflector. Two 10 mm X 10 mm SAM
samples were used in our investigations. One was
cut from the center of a wafer, and a second was taken
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Tig. 3. 60-ps mode-locking pulse generated by a passively mode-
locked Cr**:Ca,GeO, laser measured by a combination of a fast
photodiode and a sampling oscilloscope.

from the corner of the same wafer. The measured
reflectance for the center-cut sample was more than
99% from 1407 to 1475 nm, and the peak reflectivity
of 99.6% was centered at 1440 nm. A peak reflec-
tivity at 1420 nm was observed for the corner-cut
sample from the same SAM wafer. The observed
difference in center wavelength is due to in-plane
thickness variation across the area of the SAM cre-
ated during the molecular-beam expitaxial growth.

The mode-locked Cr**:Ca,GeQ, laser with the
center-cut piece of the SAM generated pulse widths of
60 ps with 1-nm bandwidth for a long period {more
than 4 h} and low-amplitude noise fluctuations (less
than 2%). Pulse duration measurements were made
with a fast photodiode (New Focus Model 1417) and a
sampling oscilloscope (Tektronix Model 11801B) com-
bination that had a minimum pulse resolution of 20
ps. A sampling scope oscillogram of a 60-ps pulse is
shown in Fig. 3. This mode-locked Cr*":CayGeO,
laser operated at 1416 nm without a tuning element
inserted into the cavity, and a maximum outpui
power of 110 mW was obtained for 2.4-W absorbed
pump power with 1% output coupling. The cw las-
ing threshold was at 300 mW of absorbed pump
power. The onset of mode-locked operation was ob-
served for an absorbed pump power of 760 mW, and
an optical slope efficiency of 5.0% was recorded. The
beam profile was TEM,, for stable mode-locked op-
eration. For an absorbed pump power of 1.33 W we
measured a tuning range of 14041468 nm by using
an intracavity birefringent plate. These data are
summarized in Fig. 4 (curve A). Curve B of Fig. 4 1s
the tuning measured with the corner-cut SAM in-
stead of the center-cut piece. The range is shifted to
shorter wavelengths, extending the tuning to 1365
nm. Stable mode-locked operation was observed
over the 1380-1460-nm wavelength range with vari-
ation of the pulse duration from 60 to 75 ps.

3. Summary

In summary, the operation of a direct fiber-pumped
mode-locked Cr:Ca,GeQ laser with a SAM has been
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Fig. 4. Tuning range of a fiber-laser-pumped mode-locked Cr:
Ca,GeQ, laser with corner-cut {squares) and center-cut (circles)
SAM samples. ML Range, the wavelength range over which sta-
ble mode locking was observed.

described. By utilizing a fiber-laser pump source,
we have built an all-solid-state cw Cr:Ca,GeQ, laser
with a maximum output power of 410 mW at 1410
nm. The fiber-laser-pumped Cr:CayGeO, laser is a
practical all-solid-state compact source of radiation in
the 1335-1492-nm wavelength region. Passive
mode locking of a Cr:CayGeQ, laser has been
achieved with an intracavity SAM device that rou-
tinely generates pulses as short as 60 ps in the 1380—
1460-nm tuning range, Improvements in Cr
CayGeQ, crystal growth will lead to larger output
powers, and subpicosecond pulses may be generated
with the implementation of intracavity group-
velocity-dispersion compensation.
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