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Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform mediam

I. INTRODUCTION

- " Scientists have tried for decades to develop exact or ac-
curate analytical approximate solutions of the Boltzmann
transport equation in various cases [1-3]. Any progress in
this. direction is a contribution to fundamental research in
notfi-equilibrium statistical dynamics. An accurate analytical
- approximation may have applications in a broad range of

. fields, such as the atmosphere, medicine, and solid state
~physics. Photon migration in a highly scattering turbid me-
_-dium is a good example. The solution of inverse problems in

optical tomography, such as the location of a tumor in a

woman'’s breast from the scattering of light pulses, requires

~the inversion of a weight matrix [4] obtained by convoluting
‘two Green’s functions of the forward scattering problem,
- The analytical solution of the photon diffusive equation in an
infinite uniform medium has been broadly used as a back-
ground Green's function [4]. By introducing  ‘‘image

- sources,”” the solution can be extended to semi-infinite,
. slabs, and boxes geometry. The diffusion approximation faiis

~:at carly times when the photon distribution is highiy aniso-
. tropic. Solutions of the diffusion equation or the telegra-

.. pher’s equation do not produce the correct ballistic limit of

- light propagation [5]. The Monte Carlo method can be used
:"_:t()_._.':fsimulate photon migration at early times; however, de-
_'.'taile_d_solution of a five-dimensional Boltzmann transport

i equation using a predominately numerical approach, with the

""fes'(_)lqtion good enough to check the analytical solution,

“leads to prohibitive CPU times,

- -Recently, Polishchuk et al. [6] and Perelman ef al. [7}

suggested different models of photon migration. They used

the path integral approach and the time-dependent Green's
fu’r_i'k_:'tion method to treat the photon migration problem. They

-2 consider only multiple small-angle scattering, based on the

" fact that the phase function (angular distribution of the scat-

.. tering cross section) in many media has a very sharp forward
‘. peak. A solution of the steady transport equation based on
‘the small angie approximation was also presented by Ishi-

maru [8]. However, it can be shown that the transport mean

ree path obtained by an average of | —cos & over small

: '_aﬁgles could be several times larger than that obtained by an

“average over all angles. Thus, the small angle scattering ap-
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We consider an analytical solution of the time-dependent elastic Boltzmann {ransport equation in an infinite
uniform isotropic medium with an arbitrary phase function, We obtain (1) the exact distribution in angle, (2)
the exact first and second spatial cumulants at any angle, and (3) an approximate combined distribution in
position and angle and a spatial distribution whose central position and half-width of spread are always exact.
The resulting Gaussian distribution has a center that advances in time, and an ellipsoidal contour that grows
and changes shape providing a clear picture of the time evolution of the particle migration from near ballistic,
through snakelike and into the final diffusive regime.

PACS number(s): 42.25.Fx, 42.25.Dd, 78.90, +t, 0.5.20.-y

proximation is not quantitatively correct. Therefore, a proce-
dure permitting wide-angle scattering is esseatial.

In this paper, we present analytical expressions for the
distribution function and the density distribution of the solu-
tion of the elastic Boltzmann tfransport equation in an infinite
uniform medium. The phase function is assumed to depend
only on the scattering angle P{s,55)= P(s-55). Under this
assumption, the small angle approximation is avoided, and
an arbitrary phase function can be handled. Our solution for
the distribution in angle is exact, as are all first and second
spatial cumulants at any angle as functions of time. After
many scattering events have taken place, the central limit
theorem guarantees that the spatial Gaussian distribution cal-
culated will become accurate in detail, all camulants higher
than the second approach small values relative fo the ap-
proximate power of the second cumulant. At early times,
when the errors would be worst, the spatial distribution func-
tion at any angle is quantitatively accurate in the sense that it
has the exact mean position (the first cumulant) and the exact
and narrow half-width of spread (the second curmnulant) as a
function of time. Since the inverse scattering problem is
done with instruments of finite resolution, in the presence of
noise, finer detail is lost., and the first two cumulants may
provide an adequate description of the scattered beam.

This paper is organized as follows. Section II describes
the derivation of the formula, which includes ( 1) obtaining
an exact solution of the distribution in angle, (2) obtaining an
exact formal solution in position and angle, (3) using the
cumulant approximation up to the second order that leads to
a Gaussian spatial distribution, (4) obtaining exact first and
second spatial cumulants based on the exact apgular distri-
bution. Section Il provides the main results of the distribu-
tion function in position and angle, and the density distribu-
tion in position alone. Section IV makes a comparison of our
result for the special case of 1sotropic scattering with that of
the exact solution provided by Hauge [9]. A discussion of the
effectiveness of the cumulant approximation is presented in
Sec. V.

IL. DERIVATION

Without loss of generality, we discuss the photon scatter-
ing problem with a given light speed in the medium c¢. Ap-
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plying our result to an another particle elastic scattering
problem, with the constant particle speed in the medium v is
straightforward. The photon distribution function /{ r.s,1) as
a function of time ¢#, position r and direction s, in an infinite
uniform medium, from a point pulse light source &(r
— 1) 8(s—5) 8(1—0) obeys the Boltzmann equation i3]

AI(r,s,0)/ 3t +cs- V I(r,s,t)+ p (1,8t}

=,LLSJ P(s,s)[I{r,s',1)—1(r,s,1)]ds’
+ 8(r—rg) 8(s—sp) 61— 1), {1

where u, is the scattering rate, u, is the absorption rate, and
P(s',s) is the phase function, normalized to Jds' P(s',s)
=1, When the phase function depends only on the scattering
angle in an isotropic medium, we can expand the latter in
Legendre polynomials

P(ss")= i—E aPys-s’), 2)
4ar !

and regard a; as known, either from Mie theory [10}, or a
preliminary experiment.

We first study the dynamics of the photon distribution in
the light direction space F(s,sg.£), on a spherical surface for
s of radius 1, which is equivalent to the velocity space in the
elastic scattering case. The kinetic equation for F(s,s,. {) can
be obtained by integrating Eq. (1} over the whole space r.
The spatial independence of u,, u,, and P(s,s’) retains
translation invariance. Thus the integral of Eq. (1) obeys

FF(8,50,1) dt+ p F(8,8.1)

+pd_{ F(s,80.4)— f P(s,8")F(s',sq.1)ds’
= &(s—sy) 5(t—0). (3)

Since the integral of the gradient term over all-space van-
ishes. in contrast to Eq. (1), if we expand F(s,sq,¢) in spheri-
cal harmonics, its components do not couple with each other.
Therefore, it is easy to obtain the exact solution of Eq. (3)

[

CXP( _'glr)P.'(S‘ SO)exp( - Ju'at)7
(4)

where g;=u,[1—a,/(21+1)]. Two special values of g, are
26=0, which follows from the normalization of P(s,s") and
g1 =cll,, where [, is the transport mean free path, defined by
1, = cl[ (1 ~cos )], where cos @ is the average of s-s’ with
P(s.s') as weight. Equation (4} serves as the exact Green's
function of light propagation in the velocity (or angular)
space. Since in an infinite uniform medium this function is
independent of the source position 1y, requirements for a
Green's function are satisfied, especially, a Chapman-
Kolmogorov  condition  is  obeyed: [ ds’' F(s".s' .t
—t"YF(s 8.0 1) =F(s",s,t—1y). In fact, in an infinite
aniform medium, this propagator determines all behavior of
light migration, including its spatial distribution, because dis-

21+1
F(s.sy.1)=
(s.50:1)= 20—
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placement is an integration of velocity over time. The photon
distribution function I(r,s,t}, for the initial source direction
so and fhe source position rp=0, is given by

I(r,s,t)"—"<B{r—cJ;s(t')dt’lﬁ[s(t)_s]>, (5)

where the angle brackets denote the ensemble average in the
velocity space. The first & function insures that the displace-
ment, r—0, is given by the path integral. The second & func-
tion assures the correct final value of direction. Equation (5}
is a formally exact solution, but can not be evaluated di-
rectly. We, hence, make a Fourier transtorm for the first &
function in Eq. (5) and make a cumulant expansion to the
second order [12]. For an arbitrary random variable,

{e*y~exp({A))exp({A7)/2), (6)

where index ¢ denotes cumulant: (A%),=(A%)—(A}(4). An
exact result is valid only if A is Gaussian. In the following
{B), is called the cumulant of B. while (B) is called the
moment of B. Substituting this approximation into the Fou-
rier transform of Eq. {5), we have

1
I(r,s,t)=F(s.50.1) -(—2;3‘3“ J, dk

Xexp( ika( ra—c< J‘Otdt'sa(t’)> )
1 ot t
- Ek”’kﬁczl < Ldt' fodt”T[sa(t’)sﬁ(t")]>

w~< fodz’sa(r’)>an’r’sﬁ(r')”), (7}

where T denotes time-ordered multiplication [13]. Integra-
tion over k in Eq. (7) directly leads to a Gaussian spatial
distribution displayed in Eq. (10) below. Using a standard
time-dependent Green's function approach, the ensemble av-
erage of the cumulants in Eq. (7) can be calculated. The
compenents of the first cumulant, which is the average center
position of the distribution, conditioned on s=sg at =0 are
given by

f i i
<J0df 540t ))2%“(;’—50—’5‘[0(11‘ J’ds Fiss'.t—1t')

X s (s’ 8p.1"). (8}

€

The denominator appears because this is a conditional aver-
age. The components of the second moment, which is related
to the second cumulant (average half-width of spread) of the
distribution, conditioned on s=s, at =0 are given by
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_ <det’jodr”T[sa(t')sﬁ(t"}]>

1 jtd rJ’{'d f.'f d r
e—m [4 t S
F(s.s0.1) | Jo 0

X j ds"F(s,8" t~t")s F(s',s",t' ")

XsI’L’;F(s”,sO,t") + (t.c.)] , (9)

where (t.c.} means the second term is obtained by exchang-
ing the index o and B in the first term. Equation (7) is the
only approximate formula used in our derivation. Formula
for calculating the first two moments, Eqgs. (8) and (9), are
exact. In Egs. (8) and {9), F(s;,s;.7) is given by Eq. (4).
Since Eq. (4) is exact, Egs. (8) and (9) provide the exact first
and second moments. Integrations in Egs. (8) and (9) are
tedious, but straightforward.

1. RESULTS

S In the following, we set s; along the z direction and de-
" note s as (6, ¢). Our cumulant approximation to the photon
distribution function is given by

F(s,sq,t) 1
(477 (detB) 2P

]
H(r,s,1)y= — 7 (B g

X(r—r”)a(r—r”)ﬁ}, (1)

with the center of the packet (the first cumulant), denoted by
rf; located at

K=GZ AP (cos LI+ Dfgrgir )+ gi—81-1)],

N (11a)
r;=(}2 A,P}”(cos #{cos ¢)

Xfgi~g1-)—flgi— g )]s (11b)

: where G=c exp(- uWF(s,50, 1), A ;= (1dm)exp(—~g).g; is
. defined afier Eq. (4), and

flg)=[explgrn—1)g. (12)

ri is obtained by replacing cos ¢ in Eq. (11b) by sin .
~ As an example, we derive Eq. (11a) as follows:

<o ¢ / r r !’ P + r r
._ r:_F(S,S(},[) fudt fds F(ss't—t")s F(s.s5,t").

© where F(s,.5,1) is given by Eq. (4). We denote s
=ls,.5,,5.]=[sin fcos ¢sin Fsin d.cos §]. The spherical
harmonics addition theorem is given by [14]
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Tl —m)!
Pils;-sy)=2, oy P cos ) P

X(cos @y)cos[m(p;— ¢by)], (13

where 7=1 and 7,=2(m>0), P{"(cos @) is the associ-
ated Legendre function. The recurrence relations of the
spherical harmonics is given by

i
cos §' P (cos §') = ———[(I—m+ DP™ (cos 8)

20+1
+{1+m)P}™ (cos 6')]. (14a)
: r ] m !
sin 8" P{™(cos ¢’ )= WEPLT”(COS 8"
—P{" 1 cos 6)]. (14b)

The orthogonality relation of the spherical harmonics is

1
J- dcos 8' P{™(cos 6’_)P§:")(cos 6"
-1

2 (i+m)! 5 s
T 2041 (I—m) M (15)
Using Egs. (13)-(15) and making integrations, first over ¢',
then over ¢', and last over ', Eq. (11a) is obtained. Using a
similar procedure, all results in this section were obtained.

The square of the average spread width (the second cu-
mulant) is determined by

Baﬁ:cGAaﬂ—rgrE;/Z (16)
with

-1 I+ 1)({+2
Azz=2 AP )(cos H)[ ;[ )E(” ( ) } 2
) —

1 2043 l
2 (I+1)2
YT B B (172)
f -1
Axx,yy:; EAJPI{COS 9) - 21— 1 EF“
(I+1HI+2) I—n

{2} {3}
2{+3 ! 20—1 E

(I+H0H+2)

1
T3 Eﬁ‘“JiZ E«A,P}Z‘(cos )

i
XC()S(ZQS){z[*I Ef.“*%

1
EP— E}“J. (17b)

20— 7 T 213

where (++) corresponds to A, and (—) corresponds to Ay,
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| 1
o @ , (n
Bgy=8y= 2 F AP (cos 9)5“‘(2"’)[21— i

1 1 1
o7 ) S . &) S — {43
+ s BT e B T e B } (17¢)
1 21—t
sz=Auw_—E —Z—AlPSI)(cos 9){cos¢){ 57 1)E§1)
t -

2(142) oo
2(+3 !

1 1
+ -éml_——l_E?)_l_ mE54)]. (17(1)

A,, is obtained by replacing cos ¢ in Eq. (17d) by sin ¢. In
Egs. (17a)~(17d)

EV=[f(g;~gi-2)—fl&r— 8-V (81-17&1-2),
(18a)

Egz)=[f(g.'_31+2)_f(gi'—31+1)]/(gl+1_gl+2)a(1

8b)
EP =[f(gi— g1y~ tV(gi~&i-1); (18¢)
EW=1f(g,—g1+1)—1)(&1— 81+ 1) (18d)

A cumulant approximate expression for the pho-
ton density distribution is obtained from N(r,1)
={(8[r—c[gs(t")dt’]), where an average over the angular
distribution is required. Using [dsF(s,s’.1)=exp(— ), We
have a Gaussian shape

()= e ! (z—R.)?
(r1)= (47D ,ct)'* 4wD ot Xp 4D ¢t
y (x*+y%) .
XP =I5 ot exp(— pat), (19)
with a moving center located at
R.=c[l—exp(—g1}V & (20)

and the corresponding diffusion coefficients are given by

D =1[L_3,8_1t_&_[1_exp(,,_g,n
7311, gy(gi—82) !

- Sz(gs”gz)[luew(_gz[)]

3
—m{l—exp(—glt)]zl, (21a)

c| ¢
D,ZD}.}F { + £2

x — 1—exp{—g )
- 3t & g?(gl—gl)[ p(—gn)]

{IMCKP(ﬂng)]}- (21b}

g2(g:—&2)

In contrast to Egs. (11} and {17, these results are inde-
pendent of g, for [>2. Figure | shows the moving center of
photons. R. [Eq. (20)]. and the diffusion coefficients, D
and D, [Egs. (21)], as function of time. where g; are calcu-
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FIG. 1. The moving center of photon density function R, [Eq.
(200} and the diffusion coefficients D, and D,, [Eas. (21}}, as a
function of time £.

lated by Mie theory [10] assuming (for this figure) water
droplets with r/A=1 are uniformly distributed in air, with r
the radius of the droplet, A the wavelength of light, and the
index of refraction m=1.33.

Fach distribution in Eq. (10} and Eq. (19) describes a
photon ‘‘cloud”’ anisotropically spreading from a moving
center, with time-dependent diffusion coefficients. At early
time t—0, f(g)~t+0(* in Eg (12}, and EYV' =112
+0(t%) for j=1,2,3,4 in Egs. (18). From Egs. (11), Egs.
(17), and Egs. (20) and (21), we see that for the density
distribution, N(r,t), and the dominant distribution function,
that is /(r,s,t) along s=sp, the center moves as cf 8o and the
B in Eq. (16) are proportional to £3 at t—0. A distribution
function I(r.s,t) along s#sg 18 small since F(s,5¢.t)~t
when 7— 0. Tts center moves at a certain direction with dis-
placement proportional to <7, and the B,z in Eq. (16) are
proportional to ¢2 at t—0. These results present a clear pic-
ture of nearly ballistic motion at t—0. Roughly speaking,
this near ballistic motion maintains its speed up to R,
~().61, {see Eq. (20)]. This closely agrees with experimental
results of optical coherent tomography (OCT) [15] that the
range of good resolution extends to about 600 wm, in a tissue
of {,~1 mm. With increase of time, the motion of the center
slows down, and the diffusion coefficients increase from
zero. This stage of photon migration is often called a
“*snakelike mode.” _

With further increase in time, the [th Legendre component
in Eqs. (4), (11), and (17). exponentially decay with a rate
related to g;. The detailed decay rate, gy, is determined by
the shape of the phase function. Generally speaking, the very
high /th components decays in a rate of order of u;, as long
as its Legendre coefficient a, distinctly smaller than 2{+1.
Even in the case that the phase function has a very sharp
forward peak, in which there are nonzero a; for very high /th
rank, the a, are, usually, much smaller than 2[+ 1. There-
fore. for the distribution function at time f after the ballistic
stage is over, a truncation in the summation over [ is avail-
able. R
At large times, the distribution function tends. to become ¢
isotropic. From Egs. {(19)—(21). the photon density, at £
>[,/c and r=!,, tends towards the conventional diffusion
solution with the diffusive coefficient I,/3. “Therefore, our
solution quantitatively describes how the’ photon: migrates
from nearly ballistic motion to diffusive motione::
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IV. COMPARISON WITH AN EXACT SOLUTION
IN THE ISOTROPIC SCATTERING CASE

A check of our angular distribution, Eq. (4), the first mo-
“ments, Eq. (11), and the second moments, Eq. {17), for a
special case of isotropic scattering is performed by compar-
ing with the exact solution given by Hauge [9] and agree-
ment is verified. Hauge has provided an exact solution for
isotropic scattering in the form of a Fourier transform in
space and Laplace transform in time, which is given by

Ikg(s)sjo dte_’:‘f dre ™™ (r5,1), (22)
with
-1
K om o [Kle
Ikg(s)mg'-i-pﬂwik'cs[l ke '™ +a
! 1 I(s—sy)

XZ; ftutikocsy (+tutik-csy’ (23)

In order to compare, we set u,=0 and p,= g in this paper.
In the case of isotropic scattering, g,=0, and g,=pu, [

=12,....
Equation (4} in the isotropic scattering case, reduces to

1
F(s,so,t)=E[I—e”"“]+e"“’5(s~50). (24)

ts Laplace transform in time is given by

L s Ss—s)
L{F(S,Sgeg)]“%§(§+#)+ {tu - 29

i Eq. (23) is evaluated at k==0, that means integration of
I(r,s,t) over r, the result is the same as Eq. (25). Thus the
exactness of F(s,s,,r) is verified for the isotropic scattering
case.

The first moments, Egs. (11), without normalization,
[without divided by F(s,sy.1)], for the isotropic scattering
case, reduce by our procedure to

. F+cos@{1—e™# o ot
= te +re M 8(s—sg) .
{26a)
= sin g P ll—e™# o 26
= sin fcos ¢4qr m te .

- These coordinates of the center have the Laplace transforms,

o given by
e 1+cos @ I S(s—sy)
A=t Ty @
i [ N ] # b
L£[F ]=¢(sin ) (cos (ME; W {27b)

Since moments can be obtained by differentiation of charac-
teristic functions, we evaluate 9/3(— ik ){EG.(23)}cmp.
that means integration over space of r, with I(r,s,7) as
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weight. The results are same as Egs. (27). Thus, by a slight
extension of Hauge’s results we verify the exactness of our
first moment in the isotropic scattering case.

For a check of the second moment, we notice that Egs.
{18} are obtained from

t '
fdt’exp(at')ft dt" exp(bt")
0 0

Bt — 1)/ (a+ b)Y~ (e¥ —1)/a],
T (Ua)[(e"—1)a—1], a=-—b.

(28)
In the isotropic scattering case, the limit as a—0, or —0, or
both is needed.

Equation (17a), without normalization, in the isotropic
scattering case reduce to

cos® f+cos 8] 1 1 t 2
AL =t —ge Mg T —— TR
& 4 “ K “ 2
62 ! myrt — et Zt2 — et
+T§:}; ;—e ——¢ t“i+c¢ —i-e 5(8—80).

(29)

This moment based on our method has a Laplace transform,
given by

_. . ,cosff+cos®  p c? ui+3iu
A= [ " 2= Bty
2
I'n
+ m S(s—sy). (30}

'The corresponding result from Hauge’s solation are obtained
by (1/2)8%3(~ ik,)o( — ik M Eq.(23)}|x—g, which implies
integration of (r,r,)/2 with I(r,s,7} as weight over space.
The same result as Eq. (30) is obtained. The similar proofs
have been performed for A5, , AS , A°, AS , and AS

xx? ’ ’ Xyt
verifying the exactness of our secorfc"{ moments.yfn evaluati(';n
of the wvalue and the derivatives of B=]]
~ (w/|kleytanT[klc/({+ 1)1} at k=0, we have B=(¢
Fu)L Bo=0, Boo=2uc* /(3% +w)]. and B,p=0 if
aF 3.

In the above equations the term related to ¢ ™#' §(s—s),
has cumulants r{=cf and 2A__ —(r$)?=0. This spike repre-
sents the unscattered part of the light, which reduces its in-
tensity as exp(—ut). The scattered part of light along the
directions of s#s; has the correct mean positions and
spreads, as has been proved.

V. DISCUSSION

The decoupling of harmonics is valid only for the angular
distribution, F(s,sy,t), because in Eq. (3) the term such as
cs-V I(r,8.1) in Eq. {1} disappears. This result is availabie
only for an infinite uniform medium, otherwise Eq. (3) can-
not be derived from Eq. (1). When the spatial related distri-
bution, [(r.s,f), is calculated, the coupling of the different
harmonics remains, and is presented in Eqgs. (8) and (9),
through the recurrence relation of harmonics, Eq. (14), and
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explicitly shown in Egs. (11) and (17), the results of the first
two moments. Contrasting with the usual approach using an-
gular moment expansion of Bg. (1), our cumulant approach
has two remarkable features: (a} since the formula for calcu-
fating cumulants, Eqs. (8) and (9) (and possible extension to
higher order cumulants), use the standard Green’s function
approach without making approximation and the Green’s
function, Eq. (4), 1s exact, the obtained cumulants, as far as
the nth order concern, are exact. {b) The cumulants obtained
appear as the arguments of the exponential functions in Eq.
{7), that implies that an infinite series in the usual angular
moment expansion has been included. Therefore, even
though only derived by terminating at the second order cu-
mulant, the distzibution function obtained has the exact cen-
tral position and the exact half-width as functions of time,
and thus leads to the correct ballistic limit at f—0 and cor-
rect diffusive limit at large ¢. This result is not achieved for a
general phase function in any known publication.

The cumulant expansion terminating at the second order
is a standard method in statistics [12], which neglects all
cumulants higher than second order, and ieads to a Gaussian
distribution. If we examine the spatial displacement after
each collision event as an independent random variable, Ar;,
the total displacement is ZAr(i=1,....N). The central
limnit theorem claims that if N is a large number, then the sum
of N variables will have an essentially Gaussian distribution.
Therefore, after enough collision events happened, the distri-
butions we calculated become accurate in detail, not just
having the correct center and spread. At early time, the pho-
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ton spread is narrow, hence, in many applications the de-
tailed shape is less important than the correct position and
correct narrow width of the beam.

In case a more accurate distribution at early time is

needed, the exact higher (than second) order cumulants can
be analytically calculated, and Eq. (7Y can be extended to
higher order. Analytical expressions for exact spatial cumu-
jants up to an arbitrary nth high order have been derived, and
will be presented elsewhere [16]. However, a closed analyti-
cal form in space is unlikely to result, and a numerical Fou-
rier transform over k would be required. We have therefore
terminated the current calculation at second order in this pa-
per.

In summary, we have derived an analytical solution of the
distribution function, Eq. {10}, and the density distribution,
Eq. (19), for the elastic Boltzmann transport equation in an
infinite uniform medium. This solution is quantitatively ac-
curate up to the second order cumulant approximation and
shows a clear picture of time evolution of particle migration
from ballistic to snakelike, then to the diffusion regime. The
first two position cumulants at any angle and the angular
distribution are completely exact as functions of time.
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