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Photon migration in turbid media using a cumulant approximation to radiative transfer
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A photon transport model for light migration in turbid media based on a cumulant approximation to radiative
transfer is presented for image reconstruction inside an infinite medium or a bounded medium with a planar
geometry. This model eats weak inhomogeneities through a Born approximation of the Boltzmann radiative
transfer equation and uses the second-order cumulant solution of photon density to the Bolizmann equation as
the Green's function for the uniform background. It provides the correct behavior of photon migration at early
times and reduces at long times to the center-moved diffusion approximation. Af early times, it agrees much
better with the result from the Monte Carlo simulation than the diffusion approximation. Both approximations
agree well with the Monte Carlo simulation at later times. The weight function for image reconstruction under
this proposed model is shown to have a strong dependence at both early and later times on absorption and/or
scattering inhomogeneities located in the propagation direction of and close to the source, or in the field of
view of and close to the detector. This effect originates from the initial ballistic motion of incident photons,
which is substantially underestimated by the diffusion approximation.
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L. INFRODUCTION

Photon migration in turbid media is a random walk in
which rays or photons traverse a medium of scatterers and
absorbers, and undergo multiple scattering and absorption
events before escaping, A natural framework to deal with this
type of problem is provided by the theory of radiative trans-
fer in Chandrasekhar’s classic text [1]. The linear Bolezmann
equation governs the radiation field in a medium that ab-
sorbs, emits, and scatters radiation [2]. Because the Boltz-
mann equation is a nonseparable, integro-differential equa-
tion of first order for which an exact closed-form solution is
not known except for a few special cases, various approxi-
mations have been devised {1,3,4]. The most common ap-
proximation is the diffusion approximation, which corre-
sponds to the lowest-order truncation in the spherical
harmonic expansion of the photon distribution function. It
follows {rom the Boltzmann equation under the assumption
that the photon distribution is almost isotropic after a suffi-
cient large number of scattering events, and thus provides an
asymptotic approximation applicable to later times [5]. The
diffusion approximation is invalid when the incident photon
still retains its directionality preference. Moreover, approxi-
mations using higher-order truncation in the spherical har-
monic expansion of the photon distribution function are still
inefficient in describing the ballistic movement of photons at
early times [6]. Yoo et al. {7] reported that the diffusion ap-
proximation fails for small and intermediate scattering
ranges. The range of failure is proportional to the transport
mean free path {,=1,/(1—g) where [, is the scattering mean
free path and g is the scattering anisotropy (the average co-
sine of the scattering angle). For one important class of ap-
plications of photon migration in a turbid medium—the
medical applications, the medium has a strongly peaked
phase function in the forward direction and a typical trans-
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port mean free path /,~ 1 mm for human breast tissue. The
diffusion approximation is thus incorrect for a substantial
scattering range. In optical tomography [8-13] where the
distribution of inhomogeneities inside a highly scattering
medium is reconstructed from measurements of the transmit-
ted light surrounding the medium, the diffusion approxima-
tion yields a much underestimated weight function when any
separation between the source, the inhomogeneity, and the
detector is small. This error may distort the signal from the
inhomogeneity inside the medium because the weight func-
tion near surface is usually much larger than that inside.
Recently, an analytical solution to the Boltzmann equation
was derived by the authors in an infinite uniform medium
using a cumulant expansion [14,15]. An exact but formal
solution to the Boltzmann equation yields the photon distri-
bution function /{r.s,t) at position r, direction s, and time ¢,

I(r,s,r_)m< E{r—cJﬂs([')dr'
0

for a source S(r—rp)S(s—s;) (1), where {) means an en-
semble average in photon direction space. Equation (1) is
evaluated in Fourier space with the use of the well-known
cumulant expansion theorem [16]. An algebraic closed form
of expression is obtained for an arbitrary nth order cumulant.
This expansion is inherently different from the spherical har-
mornics expansion of the photon distribution. The first-order
cumulant calculation determines the exact center position of
the photon distribution; the second-order cumulant calcula-
tion determines the exact half width of the photon distribu-
tion in addition; higher-order cumulant calculations provide
progressively more details of the shape of the photon distri-
bution but do not modify the cumulants of lower order. This
is a major advantage of the cumulant expansion. The photon
distribution approaches a Gaussian distribution as the num-
ber of scattering events increases according to the central
limit theorem [16]. So it is not surprising that the second-
order cumulant solution with a correct center position and

5(5(!)—s)>, (1)
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half-width has already provided a clear picture of the time
evolution of photon migration from the initial ballistic to the
final diffusive regime—that photons migrate with a center
that advances in time, and with an ellipsoidal contour that
grows and changes shape [14].

The cumulant solution depends explicitly on the phase
function of the medium and involves a complicated numeri-
cal integration over angular parameters to build a forward
model. It is inconvenient for direct use in image reconstruc-
tion. An approximate form of the second-order cumulant so-
lution relating the scattered wave field directly to the weak
inhomogeneities in an infinite space was later proposed by
the authors [17], which retains the main features of photon
propagation at both early and later times and reduces to the
conventional diffusion approximation at fater times.

In this paper, we will first extend the second-order cumu-
fant solution to planar geometries (semi-infinite and slab me-
dia) after a brief recount of the main results of the cumulant
solution to the Boltzmann equation in an infinite space. The
result of Monte Carlo simulations is then presented for both
infinite and semi-infinite media to verify the behavior of the
second-order cumulant solution at both early and later times.
The weight function for image reconstruction of weak inho-
mogeneities is calculated with use of the simplified cumulant
and diffusion approximations for semi-infinite and slab me-
dia. The results from the two approximations are compared.
The advantage of this model over the diffusion approxima-
tion is then discussed.

I, THEORY

The Boltzmann equation for photon distribution function
[(r,s,t) at position r, direction s, and time ¢ from a unit
source at position ry propagating along sy at time =0, is
given by

g
S8 +es: V. I(r,s.0) + [ pdr}+ pa (o) JI(r,s,0)

=c,us(r)j ds’ P(s,s"VI(r,s' ,t)ds’

+ 3(r—ry) 8(s—sy) 8(1), {2)
where ¢ is the speed of light inside the medium, p, and w,
denote the position-dependent absorption and scattering co-
efficients, and P(s,s') is the normalized phase function of
the light propagation in the medium. The known phase fune-
tion is assumed to depend only on the scattering angle s-s’,
and is then expandable in Legendre polynomials,

P(s,s')=(4m) 1> a;P(s-s"). (3)
7
Equation (2} is nonseparable. However the evolution in

direction space, F(s,t|sg)exp(—p, cf) = [d’rI(r,s,t|ry,50),
obeys a separable equation with the solution [14]

F(s,tiso)m(w)-‘@ (20+ Dexp(—g)P(s-59). (4)

Here g,=cu,fl—a;/(21+1)], especially g,=0 and g,
=cp, where u, is the reduced scattering coefficient. The
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formal solution to the Bolizmann equation, Eq. (1), is then
evaluated by {1} expressing its first § function of position r
as an integral of explik-(r—cfs(¢+")dr")] over k in the
Fourier space, (2} making a cumulant expansion of the latter,
and (3) calculating the cumulants in the direction space with
use of the exact Green’s function F(s,t|sq} [15].

An arbitrary order of cumulant solution can be calculated
[15] with higher-order cumulants providing progressively
more details about the photon distribution. Because the pho-
ton distribution approaches a Gaussian distribution when the
number of the scattering events increases regardless of the
details of the scattering, a second-order cumulant solution is
sufficient at later times. At early times, the photons’ spread is
narrow compared to the resolution of the detector, hence the
detailed shape is less important than the correct position and
half-width of the beam. We emphasize the center of the po-
sition and half-width obtained from the second-order cumu-
lant solution is exaet and will not be altered by higher order
cumulant solutions.

The second-order cumulant solution of the photon density
NOr,t|rg,80) = [dsI'V(r,s,t|ry,89) for an incident source

propagating along the positive g axis (S9=2) in a uniform
medium, is given by [14]

i 1
(4'7TDZZCf)”2 4Dy, ct

NOY e, t|rg,80) =

% _ (Z_ZO""Rz)z
**p 4D ct
exol - {r=x0) >+ (r—y0)?|
P 4D ct
Xexp{— pqe1) 5}
with a moving center located at
R,=l[1—exp(—ct/l,)] (6)
and the diffusion coefficients
De=Dy,
_colt sllmew(=ai)]  1-exp(-g0)
3t & g2ig—g2) 208182 |’

G {L__(?’gl_gz)[l_exp(_glt)]
=731 gy gilg—g2)

2[1—exp(~go0)] Bll-exp(-g:NI*|
- - 5 - (D
82(g1—82) 2g% -

For simplicity, we use the following approximation to the
second-order cumulant solution as the background photon
distribution, I'®(r,s,f), in an infinite uniform medium [17],

I(O)(r,sattrﬂ !SO) =N(0}(r,t|r0 ,S())F(S,flSD)

miD s V (0} 8
e (1)s- VNV (r.1t|rg,50)  (8)

in building the photon transport model for image reconstruc-
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tion where the time-dependent diffusion coefficient D(r) is
taken to be an average D(?) ={D. +D,,+D,3/3 of the dif-
fusion cocefficient ellipsoid. At early times ¢—0, the first
term of Eq. (8) dominates, and F(s,1{sy)— &(s—sg), D(1)
=2 ul9-0, NO(rtlry,s0)— S(r—ro—c{t—1y)s0),
thus I‘O(r,s,z|rg,8) provides a correct picture of ballistic
motion of photons with speed ¢ along the incident direction
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so. At later times, F(s,f|s))—(4m) ", D(Hhy—=(3p)) ™!, Eq.
(8) reduces to the photon distribution of the center-moved
diffusion approximation [8].

For weak inhomogeneities, Su,(r) and Su.(r), embed-
ded in an otherwise uniform medium, a first-order Born ap-
proximation to Eq. (2) yields the change in the photon dis-
tribution {17]

I 3¢
SI(r,s,t|ry,80) = — Z“;;f dt'f dr'cSu (r N 1=t |r, )N O (" 1 |ry.50) + EJ dt'f de'D(t—1")D{t")

3¢
X[By,a{r’)+§,LL;(r')]VrrN(0)(r’,r—r’}r,%s)-V,.Nm)(r’,r’|r0,so)+ Zm;f dt'J‘ dr'D{(t—t")

X[Bpa(x")+ Sy (r") Jexp(—cpgt WN ' 1

—so: VN O 1=t e, —s)N'O (" ' [1y,50)}

after neglecting fast decaying terms involving exp(—2g) for
{1, We should point out that the optical reciprocity relation
is satisfied by both the photon density Eq. (5) and the photon
distribution Eqs. (8) and (9). At later times, the term in Eq.
(9) containing the exponential decay factor exp(—cpu,#') can
be neglected, the change in photon density, 4 w5I(x,s,¢), in
the diffusive limit, is reduced to that in the diffusion approxi-
mation (Eq. {14) in Ref. [18]).

The restriction of D(t) by taking an average of
D, Dy, and D can be relaxed. The diffusion coeffi-
cients D, =D, and D, can be used instead. The only
change is to replace all the occurrences of the form
of D(H)V N W(rt|ry,50) to

D () (x/9x+y3/ 6y )N (r,tlry.50)

+D,(0)23/37' N (r,t]rg,85)
in both Eqs. (8) and (9).

A, Extension to planar geometries

When the scattering medium is bounded, special condi-
tions are needed to set the photon density at the interfaces.
The reflection at the interface reinjects the light into the me-
dium. Using a partial current technique, Zhu et al. [19]
showed that the boundary condition for a semi-infinite me-
dium can be written as

N®—z, (10)

é]N{O)]

at the interface ;=0 where

l',_S)S' Vr.N(O)(r',r—t'lro,so)

(9)

2L, 1 =Ruy
T3 1+ R

an

Here R is the effective reflectivity at the interface deter-
mined by the Fresnel reflection coefficients. The extrapola-
tion length z, measures the distance outside the medium
where the energy density from the diffusion approximation
vanishes linearty. A recent study by Popescu et al. {20] has
also shown the dependence of the extrapolation length on the
scattering anisotropy.

The extrapolated-boundary condition has been success-
fully employed for planar geometries such as a slab or a
semi-infinite medium in diffuse imaging, in which the pho-
ton density is set equal to zero at an extrapolated boundary
located a distance z, outside the turbid medium [8,21,22].
The method of images is used to obtain the Green's function
in such bounded media. The same technique can be applied
here to the Green's function N (r,1|ry,s).

Keeping in mind that the source approaches gradually and
stops finally at ry+s,/, on average with the increase of time,
the image of the incident point source at (xg4,yq,zp20)
propagating along the positive z axis inside a semi-infinite
medium with its interface at ;=0 is a negative one at
{xg.¥9>—2Zp—2z,—2l,) propagating along the same direc-
tion (Fig. I). At early times, both the source and its image
have not arrived at the extrapolated boundary and their con-
tributions at the extrapolated boundary can be neglected.
When the time increases, the contributions at the extrapo-
lated boundary from both the source and image tend to can-
cel each other as both approach their final stops (shadow
spots in Fig. 1). The shadow spots just represent the positions
of the source and its image in the center-moved diffusion
approximation. The Green’s function of a semi-infinite me-
divm given by
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FIG. 1. The incident source at position {xg,¥g.2p=0) and its
image source at (xg.yg.—zp~22.—2l,) propagating along the
positive 7 axis in a semi-infinite medium {z=0) with its interface at
z=0. The source and its image move from their original positions
(dark spets) to their final stops (shadow spots} at later times.

Nggfm(r,rlrg,so):N(m(r,rlxg,yo,zo,s())
— NO(e,t]xg,¥00 — 20— 22— 21, ,5p)
(12)

thus approximately satisfies the extrapolated-boundary con-
dition.

The same procedure can be easily applied to a slab with
its extrapolated boundaries at z=0 and z=L. The images of
an incident source at (xq,¥o,2g) With 0=zo=L propagating
along positive or negative z axis (s,==1) are a set of posi-
tives images at (xq,Yg.zo+2nL) and a set of negative ones
at (xq,v,—2—2nL—2s_l,), all propagating along the same
direction as the source ( —=<n< % is integer).

B. Comparison with the Monte Carlo simulation

We will compare the photon densities computed by the
diffusion approximation (DA), the cumulant approximation
(CA) Egs. {5) and (8), and the Monte Carlo method {MC) for
an incident collimated pulse first int an infinite space and then
in a semi-infinite space. In DA, the incident photons are as-
sumed initially scattered isotropically at a depth of one trans-
port mean free path into the medium as used by Patterson
et al. [8]. No such adjustments are performed in CA. The
Monte Carlo code is adapted from Prahl ef al. [23] and Wang
et al. [24]. Photons are launched one by one into the me-
dium. Each photon (regarded as a packet) starts from the
origin of the coordinate system and the first scattering event
takes place along the positive 7 axis. The step size (clistance
between consecutive scattering events) is sampled from an
exponential distribution characterized by the total attenuation
7= phy+ pho following Beer’s law. After each propagation
step, the photon packet is split into two parts—a fraction
(@, /py) is absorbed and the rest scattered. The new propa-
gation direction after scattering (three directional cosines) is
sampled by assuming a Henyey-Greenstein phase function
[25]. The effect of internal reflection is included in this code.
The technique of roulette [26] is used to terminate a photon
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FIG. 2. The center position and the half-width of the photon
cloud inside a uniform infinite absorptionless medium with aniso-
tropy equal to 0.9,

packet to improve the efficiency of the calculation without
introducing a bias. The results in the following paragraphs
have been scaled to use the transport mean free path /; as the
unit of the length and the flight time for one transport mean
free path in the medium /,/c as the unit of the time. The
source is incident along the positive z axis at the origin in
space and time. 5X 10% photons are used in one run of the
Monte Carlo simulation,

The first- and second-order cumulants (the center position
and the half-width of the “photon cloud™) of our cumulant
solution Eg. (5) is

((Y={y()=0, {(z()=I{1—exp(—ct/l}],
Vax(nD = ay(nT=v2D (et
H(Bz()?) = 2D (t)et, (13)

where {) means an ensemble average of photon positions at a
specified time. This theoretical prediction can be easily veri-
fied by a Monte Carlo simulation. Figure (2) shows the first
two cumulants of photons for an incident pulse along the 2
axis at time zero into an infinite medium with anisotropy 0.9.
A perfect agreement on the center position {the first-order
cumulant) and the half-width (the second order cumulant) of
the photon distribution between our theoretical result and the
Monte Carlo simulation is obtained. The half-widths along
xyz directions are very close; the value along 2 direction is a
bit larger than that along the xy direction as predicted by Eg.
(13).

Figures 3{a)~3(c) shows the photon density at positions
(0,0,31,), (0,0,61,), and (0,0,10!,) computed by ail three dif-
ferent methods for the same infinite medium. At a distance of
31,, the time profile of photon density from the cumulant
approximation agrees much better to the Monte Carlo result
than DA by providing a correct peak position of photon den-
sity. Some amount of photons arriving faster than the speed
of light still exist in this second-order cumulant calculation.
However, this is already a big improvement compared to
DA. The result from CA can be further improved when
higher-order cumulants are used. At a larger distance, all the
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FIG. 3. Photon density at positions {a) (0,0,31,), (b} (0,0,61,),
and {c) (0,0,10/,) vs time normalized to a unit source in an infinite
medium. The source is incident along the positive z axis at the
origin of the coordinate system and at time zero. The three curves
are computed by the diffusion approximation (DA}, the cumulant

approximation {(CA}, and the Monte Carlo method {MC), respec-
tively.

FIG. 4. Photon density at positiens (a) (0,0,34,), (b) (0,0,6/,),
and {c} (0,0,10{,) vs time normalized to a unit source in a semi-
infinite medivm. The source is incident normal to the surface of the

medium and along the positive z axis at the origin of the coordinate
system and at time zero.
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FIG. 5. The backscattered photon intensity I(r, —z,1) at positions (a) (0,/,,0) and (b) (0,21,,0) on the boundary of a semi-infinite medium
vs time normalized to a unit source in a semi-infinite medium. The source is incident normal to the swface of the medium and along the

positive 7 axis at the origin of the coordinate system and at time zero.

three methods begin to agree with each other pretty well and
the cumulant approximation is better than the diffusion ap-
proximation. The difference between results from DA, CA.
and MC is negligible when the distance is 10/, or larger.
The calculations using DA, CA, and MC are performed
again for a semi-infinite medium with its boundary at z=0,
whose optical parameters are taken to be the same as the
above infinite medium. The source is incident at the origin of
the coordinate system and along the positive z axis {normal
to the surface) at time zero, The effective reflectivity is taken
to be zero and an extrapolation length z,=0.7, is used in

both DA and CA calculations. Figures 4{a)-4{c} shows the '

corresponding tesults for this example. Again CA shows a
much better agreement to the MC than DA. Compared with
Fig. 3 for the infinite case, the tail of the profiles in Figs.
4(a)~4(c) for the semi-infinite medium is lower due to the
presence of an extra negative image source coming from the
boundary condition.

As a final example, the backscattered photon intensity
¢y, — 7.1} at positions (0,/,,0) and (0,2{,,0) on the bound-
ary of the above semi-infinite medium is calculated with use
of the three different methods {see Fig. 5). In DA, photons
diffuse from the adjusted source position (0,0,/,) with the
constant diffusion coefficient D=1/3. In CA, back-scattered
photons arrive later because the center of photons maoves

1

forward along the positive z direction and diffuse from the
moving center with a gradually increasing diffusion coeffi-
cient from O to /3. CA agrees well with the Monte Carlo
simulation. '

C. Weight function for image reconstruction

The response (the change of the scattered wave field} to a
unit absorption or scattering inhomogeneity is usually called
the weight function or the Jacobian in medical tomography
literature. This quantity plays a central role in image recon-
struction regardless of which method is used to obtain the
inhomogeneity distribution in a medium. Let us rewrite Eq.
(9) in the following form:

47 8I{r,s,t|z.80) = —CJ dr' S, (r")w, (r,8,r0,5,5:1")

c
+ . ,zj dr’ Sp (r")

5

X wo(1,8,7g,8, 61" ) (14)

with the absorption and scattering weight functions defined
as

1
w,(1,8,T,80. 51 )= f dt' NO 1=t |r,~s)NO(r' 1" |rg ,89) — w,{r,8,10,850, 57} (3 el
0

w,(r,8,70,80.758")

Qu!?

5

4 4
—j dt'D(t“-t’)D(t')V,:N(O)(r’,I_t'lr,—s}-VrrN(m(r',t'Iro,so)'f“J df,D(f’)
4]

0

) ¢
Xexp[ —cu (t—tVINO(x' 1= 1'ir, —8)s: V. NOW ' |x.80)— f dt'b(t—1")
0

Xexp(—cpult)sg- VaNO( 1 =1'|r, ~g)NO(xr' " |rg.S0), (15)
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respectively.
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As N t|rg.80) — 8(r—ry—ctsy) when i—0, special attentions must be paid when a numerical integration is catried out
for Eq. (15). The range of integration is divided into three areas: (,A), (A,r—A), and (r—A4,1) where 1A >0, The end
corrections from the integration over (0,A) and (r—A,r) to the weight functions integrated over (A,t— A} range are approxi-

mately given by

1 i
e,(r.8,xy 50,051} = EN(r'Jlr, —8)8(x' —xg)8(y' —yo)H(A~E)H(E) + -C:N(r’,tlrn,Sn)é(x’ =x}8(y' —y)H(A—n)H(n)

—e,(1,8,19.85,.50 Y (3u)?),

570,80, 5T D oD p
rsTyso i) ”)( 22 )so.vr,mrgrir,-s)a(xf-xo)aw’—yo)Hm—f)H(gHﬂ
9> ¢ cor |, c
aD(r)
X(l"‘"" - at )S'vr’N(r”ter’sG)fS(x'_x)a(yr_y)H(A_ﬂ)H(ﬂ)9 (16)
t=7

where r’' =ry+ ¢ &sy=r— ncs is the position of the inhomo-
geneity, s and s; are assumed to be along the positive or
negative z axis, and H is the Heaviside function. In the fol-
lowing calculations, the refractive index of the medium is
assumed to be 1.33; the absorption and scattering coefficients
of the medium are assumed to be 0.003 mm ' and
10 mm™?, respectively, and the scattering anisotropy 0.9,
providing a transport mean free path /=1 mm. The offset A
is taken to be 0.1 ps when more than 99% of the photon
packet still concentrates within a cubic volume (0.014,)°.
The weight function from a cubic of volume (0.01/,)" is
calculated using the DCUHRE algorithm [27].

The weight functions for a semi-infinite medium are
shown in Fig. 6 for absorption and scattering inhomogene-
ities. The backscattered photons {propagating along negative
z axis) are detected by a detector placed at a position
(0,2{,,0y, off two transport mean free path from the source.
Figures 6{a} and 6(c) show the response to an inhomogeneity
at {0,0,z) positions which is in the propagation direction of
the source at delay 50 ps and 500 ps. The CA shows a much
stronger response from the inhomogeneity in the propagation
direction of and close to the source than the diffusion ap-
proximation. Both absorption and scattering weight functions
from CA reveal a peak at about 0.03/,. This peak originates
from the initial ballistic motion of the incident photon, In a
short time after the photon is launched (r—0), the photon
packet will be positioned at z*=c¢ with a spread of half-
width = \/4D(f)ctm2cr\/ct/(313), hence the presence of an
absorption or scattering inhomogeneity at position (0,0.z
<z*), sitting in the ballistic path of the photon, will signifi-
cantly reduce the number of backscattered photons received
by the detector [w,>0 and w,<<0 in Eq. (14}]. In Figs. 6(b)
and 6(d) where the inhomogeneity is placed at (0,/,,z) mm
positions, not sitting in the ballistic path of the photon, this
peak is gone.

The diffusion approximation is invalid when the inhomo-
geneity is too close to the source or the detector. Neverthe-
less, the weight function from DA is plotted over the full z

range for comparison. A peak is found in the absorption
weight function [Fig. 6{a}]} and a crossing of zero in the
scattering weight function {Fig. 6(c)] at z=1,, because of the
artificial adjustment of the source position to one transport
mean free path into the medium and the singularity of the
Green's function in DA when the inhomogeneity and the
source overlap.

A larger disagreement between CA and DA is observed in
the scattering weight function than in the absorption weight
function. The absorption weight functions from CA and DA
agree with each other relatively well except for a region of
depth of /, near the surface when the inhomogeneity is in the
propagation direction of the source, or in the field of view of
the detector. The scattering weight functions from CA and
DA disagree significantly within the region of depth of at
least 21, close to the surface. The deepest position that can be
detected by the detector at time f is roughly ct/2. This con-
dition is better observed by CA because CA shows a faster
decay rate of both the absorption and scattering weight func-
tions with the increase of the depth [Figs. 6(a)-6(d}].

The absorption and scattering weight functions for a slab
is shown in Fig. 7. The slab has the same optical parameter
as the semi-infinite medium. The thickness of the siab is d
=30!/,. The source is at the origin (0.,0,0). The detector is
placed on the opposite side of the slab, (0,0,30(}, in the
propagation direction of the source. The weight functions by
the cumulant approximation and the diffusion approximation
are strictly symmetric about the plane z=d/2. The agreement
between CA and DA for the absorption weight function is
better than for the scattering weight function. Both CA and
DA produce close results for the inhomogeneity not located
near the boundary. When the inhomogeneity is placed along
the line (0.0,z), in the propagation direction of the source
and in the field of view of the detector, two peaks at about
0.03/, and d —0.03/, appear in CA; two peaks in the absorp-
tion weight function [Fig. 7{a)] and two crossings of zero in
the scattering weight function [Fig. 7{c)] appear in DA at [,
and d—1,.
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- FIG. 6. Weight functions for a semi-infinite medium where the inhomogeneity is {(a) absorption and (c} scattering at (0,0,z), in the
propagation direction of the source; (b} absorption and (d) scattering at (0,7, .z), off by one transport mean free path, Profiles at two delay
times =50 ps and =500 ps are plotted for both the cumutant approximation (CA) and the diffusion approximation (DA}. The insets replot

the weight functions in a logarithm scale.

01 PISCUSSION

We attribute the formation of a peak very close to the
surface but not on the surface (about .03/, into the medium)
of the absorption and scattering weight function in the cumu-
lant approximation to the initial ballistic motion of the inci-
dent photon. The photon penetrates into the medium with an
initial speed of ¢ and with its center approaching and stop-
ping at one transport mean free path into the medium. Hence
the effect is only significant when the inhomogeneity is in
the propagation direction of the source or in the field of view
of the detector, and the peak response shifts away from the
surface of the medium.

The diffusion approximation requires one to adjust the
position of the source to compensate for the initial ballistic
motion of the photon [8,28,29]. From our more accurate re-
sult Eg. (9), the source and the detector terms appear in a
form of NO(¢', 7lr,—s) and NO(r',7iry,50), respectively.
The source and the detector approach gradually and stop at
ro+ 1,5, and r—1Is, respectively, with the increase of time

where s; and s are the propagating directions of the incident
and outgoing photon. The positioning of both the source and
the detector for one transport mean free path into the me-
dium is hence mandatory if the diffusion approximation is
used. The curves for DA in Figs. 6 and 7 are calculated using
this adjustment. The DA will deviate from the CA signifi-
cantly over the full range of depth if the adjustment on the
position of the source or the detector is not performed.

The diffusion approximation for image reconstruction
substantially underestimates the contribution to the emission
measurement from the inhomogeneity in the propagation di-
rection of and close to the source, or in the field of view and
close to the detector. This error may distort the signal from
the inhomogeneity inside the medium because the weight
function near surface is usually much larger than that inside,
and may lead to a failure in image reconstruction. The high
response from the region near surface is not desirable when
the inhomogeneity inside the medium is to be detected in the
transmission or backscattering measurements. The cancella-
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FIG. 7. Weight function for a slab where the inhomogeneity is (a) absorption and (c) scattering at (0,0,z). in the propagation direction of
the source, {b) absorption and (d) scattering at (0,/,,2), off by one transport mean free path. Weight functions calculated from the cumnulant
(CA} and diffusion {DA) approximations are plotted for time delays of =300 ps and 1= 1500 ps. The insets replot the weight functions in

a logarithm scale.

tion between multiple measurements using nearby wave-
lengths may help reduce this effect.

Other attempts to obtain a better approximation to radia-
tive transfer in turbid media were made by various authors
such as Ishimaru's diffusion approximation [30,31], the te-
legrapher equation of Durian ez al. based on the two stream
theory [32], Gershenson's time-dependent equation in the
diffusion limit using a higher-order angular expansion [6],
and non-Euclidean diffusion equation of Polishchuk er al
£33]. The advantage of this cumulant approximation is that it
provides a clear picture of photon migration for an incident
collimated beam from early to later times and that it gives
the exact center and the exact spread of the photon cloud at
both early and later times by only using a second-order cu-
mulant approximation.

In conclusion, we have presented a cumulant approxim-
ation to radiative transfer, which provides an analytical tool
to describe photon migration at both early and later times—

from the initial ballistic motion till the final diffuse regime.
To a second-order cumulant, the solution agrees with the
Monte Carlo simulation at later times and provides a correct
peak position in time for photon arrivals at early times, in
both an infinite medium and a bounded medium with a pla-
nar geometry. The initial ballistic motion of photon produces
a strong peak in the response from absorption and/or scatter-
ing inhomogeneities, which are in the propagation direction
of and close to the source, or in the field of view of and close
to the detector, at both early and later times.
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