1 August 2002

Optics Communications 209 (2002) 209-216

Optics Communications

www.elsevier.com/locate/optcom

Optical properties of Cunyite $(Cr^{4+} : Ca_2GeO_4)$ crystals co-doped with Er^{3+} ions

M.Yu. Sharonov*, S. Owen, A.B. Bykov, W.B. Wang, R.R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, and New York State Center for Advanced Technology for Ultrafast Photonic Materials and Applications, Department of Physics, The City College and Graduate School of the City University of New York, New York, NY 10031, USA

Received 4 December 2001; received in revised form 28 May 2002; accepted 30 May 2002

Abstract

The optical properties of Cr^{4+} centers in Ca_2GeO_4 (Cunyite) single crystals co-doped with Er^{3+} ions have been measured. Excitation of Cr^{4+} produces both Cr^{4+} fluorescence centered at 1280 nm and Er^{3+} fluorescence centered at 1550 nm. The cross-section of the ${}^{4}I_{13/2}{}^{-4}I_{15/2}Er^{3+}$ transition is estimated using Judd–Ofelt analysis to be 8×10^{-21} cm². The quantum efficiency of the energy transfer from Cr^{4+} to Er^{3+} is obtained based on measurements of the decay of fluorescence from Cr^{4+} . The relative populations and gain coefficients of Cr^{4+} and Er^{3+} centers under pumping in the Cr^{4+} band are calculated with varying Er^{3+} concentrations. The co-doped Cunyite (Ca_2GeO_4) crystal can be used as an active optical medium for 1200 to 1600 nm region. © 2002 Elsevier Science B.V. All rights reserved.

The demonstration of laser action in nearinfrared from Cr^{4+} : forsterite ($Cr^{4+} : Mg_2SiO_4$) by Petricevic et al. in 1988 [1] stimulated interest in the development of new lasers activated by Cr^{4+} ions. Over the past several years a number of Cr^{4+} based laser crystals have been grown and investigated for laser operation [2,3]. One of the few laser grade materials successfully produced by these efforts is $Cr^{4+} : Ca_2GeO_4$ laser crystal called Cunyite. $Cr^{4+} : Ca_2GeO_4$ has an olivine structure and is isomorphic with Cr^{4+} doped forsterite but has much weaker high temperature quenching of the Cr^{4+} luminescence. In contrast to forsterite, a high Cr^{4+} concentration is easily achieved in the Ca_2GeO_4 lattice, and there is no indication of the presence of Cr^{3+} [4,5]. Pulsed, cw, and passively mode-locked operation of Cr^{4+} : Ca_2GeO_4 crystals was demonstrated with tunability in 1208–1500 nm spectral range [6,7].

In this paper, we report on the optical properties of Ca₂GeO₄ crystals activated by both Cr^{4+} ions and Er^{3+} ions. Efficient energy transfer occurs from Cr^{4+} to Er^{3+} ions, giving rise to Cr^{4+} ions as a sensitizing agent for Er^{3+} luminescence. Cr^{4+} and Er^{3+} can also work in emission pairs as active centers in lasers extending the tuning range of Er^{3+} to the high-energy part of the spectrum (1200– 1400 nm) in comparison with only Er^{3+} media (1500–1650 nm).

Corresponding author. Fax: +1-212-650-5530.

E-mail address: sharonov@photonicsmail.sci.ccny.cuny.edu (M.Y. Sharonov).

Ca₂GeO₄ is an olivine mineral and has Pnma Z = 4 space group symmetry with lattice constants a = 11.4 Å, b = 6.79 Å, c = 5.24 Å. Cr⁴⁺ substitutes for Ge4+ in a distorted tetrahedral position with site symmetry $C_s(C_{2y})$. Rare-earth ions substitute for Ca²⁺ with charge compensation. Powders with 0.1, 0.25, 0.5, and 1.0 wt% of Cr were synthesized. For fluorescence decay time measurements and absorption spectra measurements good optical quality single crystals of Er^{3+} , Cr^{4+} : Ca₂GeO₄ were grown by a top-seeded solution growth method. The concentration of Cr⁴⁺ was 0.1-1.0 wt%, and the concentration of Er^{3+} was 0.5–2.0 wt%. Three samples with different polarization orientations of 0.2-2.0 mm thickness were cut for absorption measurements.

Absorption spectra were measured on a Cary 500 double beam spectrophotometer. Spontaneous emission spectra were measured upon excitation with a 680 nm laser-diode. Lifetime measurements were done upon excitation with a Q-switched Nd:YAG laser at 1064 nm wavelength with a 5 ns pulse duration and repetition frequency of \sim 5 Hz.

The fluorescence was detected with a 20 MHz bandwidth InGaAs photodiode. Decay traces were recorded on a Tektronix TDS 684a oscilloscope and were transferred to a PC. To improve the accuracy of measurements we averaged over \sim 200 traces. For low-temperature measurements a Janis Research cryostat and a Lake Shore Cryotronics controller were used.

Fig. 1 shows the absorption spectra at room temperature of Cr^{4+} , Er^{3+} : Ca_2GeO_4 crystals for E || a, E || b and E || c polarizations. The spectra consist of broadband Cr^{4+} absorption (similar to absorption bands in Cr^{4+} : Ca₂GeO₄) and sharp lines of Er³⁺ absorption. Fig. 2 shows polarized fluorescence spectra after excitation in the ${}^{3}T_{1}Cr^{4+}$ absorption band for 0.1 wt% Cr^{4+} , 1.0 wt% Er^{3+} in Ca2GeO4. Broadband structureless emission centered at 1280 nm belongs to ³T₂-³A₂ transitions of Cr⁴⁺, and sharp lines at 1550 nm belong to ${}^{4}I_{13/2} - {}^{4}I_{15/2}$ transitions of Er^{3+} ions. The ratio of intensities of Er³⁺ and Cr⁴⁺ fluorescence depends on the Er^{3+} concentration and is determined by the efficiency of $Cr^{4+} \rightarrow Er^{3+}$ energy transfer as will be shown below.

Fig. 1. Absorption spectra of (0.1 wt% Cr⁴⁺, 1 wt% Er³⁺) : Ca₂GeO₄ crystal for E||a, E||b and E||c polarization.

Fig. 2. Polarized fluorescence spectra upon 680 nm laser diode excitation of $(0.1 \text{ wt}\% \text{ Cr}^{4+}, 1.0 \text{ wt}\% \text{ Er}^{3+})$: Ca₂GeO₄ crystals at room temperature.

The calculation of 4f–4f transition probabilities of Er^{3+} ions was carried out using Judd–Ofelt theory [8,9]. Experimental line strengths were obtained from absorption spectra of ${}^{4}\mathrm{I}_{13/2}$, ${}^{4}\mathrm{I}_{11/2}$, ${}^{4}\mathrm{F}_{9/2}$, ${}^{4}\mathrm{S}_{3/2}$, ${}^{2}\mathrm{H}_{11/2}$, ${}^{4}\mathrm{F}_{7/2}$, ${}^{4}\mathrm{G}_{11/2}$ and ${}^{4}\mathrm{G}_{9/2}$ transitions using the equation

$$S_{JJ'}^{\rm ed} = \frac{\int k(\lambda) \, \mathrm{d}\lambda}{N_0} \times \frac{3ch(2J+1)}{8\pi^3 e^2 \overline{\lambda}} \times \chi,\tag{1}$$

where $\int k(\lambda) d\lambda$ is an integrated absorption coefficient of the *JJ'* intermanifold transition (average of all 3 polarizations), $\overline{\lambda}$ is a mean wavelength of the transition, N_0 is the concentration of ions, *c* is the speed of light, *h* is a Planck's constant, *e* is the electron charge, and $\chi = 9\overline{n}/(\overline{n}^2 + 2)^2$, where \overline{n} is the mean refractive index. Intensity parameters Ω_2 , Ω_4 , and Ω_6 of the Judd–Ofelt theory that give the best fit with experimentally measured strengths of lines can be obtained using the matrix equation [10]

$$\overrightarrow{\Omega} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\overrightarrow{S}_{JJ'}^{\mathrm{ed}},\tag{2}$$

where $\hat{\Omega}$ is a vector with components Ω_2 , Ω_4 , and Ω_6 . *A* is a matrix composed of reduced-matrix

elements determined by the experimentally measured strength of the line. A^{T} denotes the transposed matrix.

Calculation gives $\Omega_2 = 3.5 \times 10^{-20}$, $\Omega_4 = 4.3 \times 10^{-21}$, $\Omega_6 = 9.7 \times 10^{-21}$. Using the intensity parameters the spontaneous emission probability of the ${}^{4}I_{13/2} - {}^{4}I_{15/2}$ electronic transitions can be calculated using the equation

$$\begin{aligned} A_{JJ'} &= \frac{64\pi^4 e^2 n^2}{3h(2J+1)\overline{\lambda}^3} \\ &\times \sum_{t=2,4,6} \Omega_t |\langle 4f^n S, L, J \| | U^{(t)} \| | 4f^n S', L'J' \rangle |^2, \end{aligned}$$
(3)

where $|\langle 4f^n S, L, J|| |U^{(t)}|| ||4f^n S', L'J'\rangle|^2$ is the reduced matrix element of the JJ' transition [11]. Using Eq. (3) calculation gives $A_{JJ'} = 97.4 \text{ s}^{-1}$. The lifetime of the metastable level of Er^{3+} , using $\tau = 1/A_{JJ'}$, is 10.3 ms. This value coincides well with the experimentally measured lifetime of 9.7 ms.

The emission cross-section of the electronic transition can be found using the equation [12,13]:

$$\sigma_i = \frac{\lambda^5 A_{JJ'}}{8\pi c n^2} \frac{S_i(\lambda)}{3\sum_i \int S_i(\lambda)\lambda \, \mathrm{d}\lambda},\tag{4}$$

where $S_i(\lambda)$ is the intensity profile of the emission band, i = a, b, c denotes the polarization. The calculated cross-sections at the maximum at 1536 nm (corresponding to the ${}^{4}I_{13/2} {}^{-4}I_{15/2}$ transition) for E||a, E||b and E||c are $5.5 \times 10^{-21} \text{ cm}^{21}$, $8.0 \times 10^{-21} \text{ cm}^2$, and $4.5 \times 10^{-21} \text{ cm}^2$, respectively. The maximum emission cross-section for Er^{3+} ions is $8 \times 10^{-21} \text{ cm}^2$, which is two orders of magnitude smaller than the maximal emission cross-section of the $\text{Cr}^{4+} {}^{3}\text{T}_{2}$ - ${}^{3}\text{A}_{2}$ transition, which is $8 \times 10^{-19} \text{ cm}^2$ [5].

Excitation in the Cr⁴⁺ band with short laser pulses produces luminescence at 1170–1500 nm from Cr⁴⁺ ions and at 1500–1650 nm from Er³⁺ ions. Short-lived luminescence in the μ s range is due to the Cr⁴⁺ ions while long-lived luminescence with ~10 ms decay time is due to the Er³⁺ ions. Er^{3+} luminescence has a pure exponential decay with decay time 9.7 ms at room temperature and 12 ms at liquid nitrogen temperature. This decay time varies only slightly from 9.7 to 8.2 ms with Er^{3+} concentration (varying within 0–2 wt% range) indicating relatively weak concentration quenching.

The luminescence lifetime of Cr^{4+} in Ca_2GeO_4 with no Er^{3+} co-doping is strongly temperature dependent and varies from ~30 µs at 77 K to ~15 µs at room temperature. The luminescence lifetime at 77 K is within a low-temperature plateau value, and the decreasing of lifetime with increasing temperature is due to nonradiative relaxation in Cr^{4+} centers [4]. Therefore, we can consider the luminescence lifetime at 77 K as the radiative lifetime.

Fig. 3 shows the dependence of luminescence lifetime of Cr^{4+} in Ca_2GeO_4 on Cr^{4+} content. At low Cr^{4+} concentrations (0–0.1 wt%) the quantum

efficiency of Cr⁴⁺ centers, given by $\eta = \tau_{300 \text{ K}}/\tau_{77 \text{ K}}(\text{Cr} \rightarrow 0)$, is determined only by nonradiative relaxation, and is ~50%. At ~1.0 wt% concentration the quantum efficiency of Cr⁴⁺ drops to ~30% because both of nonradiative relaxation and concentration quenching.

The decay traces of Cr^{4+} fluorescence after short pulse excitation in the ${}^{3}T_{2}$ absorption band (1064 nm) of (0.1 wt% Cr) Cr^{4+} : Ca₂GeO₄ are shown in Fig. 4 at (a) 77 K and (b) 300 K; and the Cr^{4+} samples are co-doped with (c) 0.5 wt% Er³⁺ (d) 1.0 wt% Er³⁺ and (e) 2.0 wt% Er³⁺ at room temperature. When there is no Er⁴⁺ co-doping and the Cr⁴⁺ concentration is small the decay is close to a single exponential (shown in (a) and (b) of Fig. 4). The lifetime, τ_{Cr} , is determined by

$$\frac{1}{\tau_{\rm Cr}} = W_{\rm rad} + W_{\rm nrad},$$

where W_{rad} is the radiative probability (inverse value of the lifetime at low temperature (30 µs))

and $W_{\rm nrad}$ is the nonradiative probability. $\tau_{\rm Cr}$ is equal to 30 µs at 77 K and ~15 µs at 300 K indicating nonradiative quenching of Cr⁴⁺ luminescence. When Er³⁺ ions are added to Cr⁴⁺ : Ca₂GeO₄ crystals, the decay of the Cr⁴⁺ centers has a more complex shape and the mean lifetime is much shorter than without Er³⁺.

The inter-ion energy transfer in double doped crystals is determined by (1) energy migration over donors (Cr^{4+} ions), (2) energy migration between donors and acceptors ($Cr^{4+}-Er^{3+}$ interaction), (3) energy migration over acceptors (Er^{3+} ions). Since concentration quenching of Cr^{4+} and Er^{3+} is relatively weak we can neglect mechanisms (1) and (3) and consider only Cr–Er energy transfer as the main mechanism of energy transfer from Cr^{4+} to Er^{3+} .

In general temporal evolution of Cr^{4+} decay can be described by [14–16]

$$I(t) = I_0 \exp\left[-\frac{t}{\tau_{\rm Cr}} - \Pi(t)\right],\tag{5}$$

Fig. 4. Decay traces of Cr^{4+} after short 1064 nm pulse excitation of (0.1 wt% Cr^{4+}) : Ca_2GeO_4 at (a) T = 100 K and (b) T = 300 K. Decay traces after short 1064 nm pulse excitation of (0.1 wt% Cr^{4+}) : Ca_2GeO_4 co-doped with (c) 0.5 wt% Er^{3+} , (d) 1.0 wt% Er^{3+} and (e) 2.0 wt% of Er^{3+} at T = 300 K. Solid lines show the best-fit approximation using Eq. (6).

where τ_{Cr} is the lifetime without donor-acceptor interaction, $\Pi(t)$ is function which describes $Cr^{3+}-Er^{3+}$ interaction.

Decays of all the studied crystals of Cr^{4+}/Er^{3+} in Fig. 4 (0.1 wt% Cr^{4+} , 0.5, 1.0, 2.0 wt% Er^{3+}) can be fitted well with the equation

$$I(t) = P_1 \exp(-P_2 t - P_3 \sqrt{t}), \tag{6}$$

where P_1 , P_2 and P_3 are fitting parameters. The best fits are shown in Figs. 4(c)–(e) by solid lines. For all the studied crystals luminescence decay can be fitted with parameter P_2 equal to $85400 \pm$ 5000 s⁻¹; the parameter P_3 is proportional to the concentration of Er³⁺ ions and is equal to $550 \pm$ 40 s^{-1/2} (wt%.)⁻¹.

We observe that the lifetimes of Cr^{4+} ions in Cr⁴⁺ : Ca₂GeO₄ crystals co-doped with rare-earth ions are slightly different from those in Cr^{4+} : Ca₂GeO₄ crystals with no rare-earth codoping at 77 K (radiative lifetime) and at 300 K (determined by both nonradiative and radiative transfer). This was observed in our preliminary study of Yb^{3+} , $Cr^{4+}Ca_2GeO_4$ crystals where there is no energy transfer from Cr^{4+} to Yb^{3+} . These lifetimes depend on Yb³⁺ concentration and vary from 15 µs (0 wt% of Yb) to 11 µs (2 wt% of Yb) at room temperature and from 30 µs (0 wt% of Yb) to 25 µs (2 wt% of Yb) at 77 K. Such behavior may be due to a change in the refractive index of the lattice by the rare-earth ions. We will not discuss this dependence here and will assume that the radiative lifetime is 25 µs and that the room-temperature lifetime of Cr^{4+} is 12 µs (hypothetical lifetime in the absence of Cr-Er energy transfer) for all the crystals with Cr^{4+} concentration of 0.1 wt% and Er^{3+} concentration within 0–2.5 wt%. This assumption is within the accuracy of the calculations.

Taking into account the above-mentioned values of the lifetimes, we see that the P_2 fitting parameter is very close to the probability of Cr^{4+} decay with no donor-acceptor interaction $(1/\tau_{Cr})$ and $\Pi(t)$ in Eq. (5) in our case is $P_3\sqrt{t}$. We can conclude that temporal evaluation of Cr^{4+} decay is described by static disordered decay of Förster type [17]

$$I(t) = I_0 \left(-\frac{t}{\tau_{\rm Cr}} - \gamma \sqrt{t} \right), \tag{7}$$

where τ_{Cr} is the lifetime without donor-acceptor interaction, *W* is the coefficient of donor energy migration, and

$$v = \frac{4\pi^{3/2} n_{\rm a} C_{\rm da}^{1/2}}{3} = P_3$$

is the coefficient that characterizes the static disordered decay which is proportional to the acceptor concentration, n_a is the concentration of acceptor ions and C_{da} is the microparameter of donor-acceptor interaction.

Using the experimentally determined parameters of energy transfer, we can now calculate the quantum efficiency of Cr^{4+} luminescence, η_{Cr} , and the quantum efficiency of $Cr^{4+} \rightarrow Er^{3+}$ energy transfer η_{Cr-Er} [18]:

$$\eta_{\rm Cr} = \frac{1}{\tau_{\rm rad}} \int_0^\infty \exp\left(-\frac{t}{\tau_{\rm Cr}} - \gamma\sqrt{t}\right) dt, \tag{8}$$

$$\eta_{\rm Cr-Er} = 1 - \frac{1}{\tau_{\rm Cr}} \int_0^\infty \exp\left(-\frac{t}{\tau_{\rm Cr}} - \gamma \sqrt{t}\right) dt.$$
 (9)

The quantum efficiency $\eta_{\rm Er}$ is close to unity because temperature and concentration quenching of Er³⁺ luminescence is small.

Fig. 5 shows $\eta_{\rm Cr}$ and $\eta_{\rm Cr-Er}$ quantum efficiencies versus ${\rm Er}^{3_+}$ content calculated using Eqs. (8) and (9) with parameters $\tau_{\rm Cr} = 12 \ \mu s$ and $\gamma = P_3 = 550 \ {\rm s}^{-1/2} \ ({\rm wt}^0)^{-1}$ obtained experimentally.

According to the theoretical model (Eq. (7)), the quantum efficiency of energy transfer – and therefore the populations of Cr^{4+} and Er^{3+} (normalized to absorbed power) – should be independent of Cr^{4+} concentration at low Cr^{4+} concentration, where the concentration quenching of Cr^{4+} can be neglected.

In the presence of donors (Cr^{4+}) and acceptors (Er^{3+}), the temporal evolution of the Er^{3+} subsystem under instantaneous excitation can be obtained by solving of the following differential equation [18]:

$$\frac{\mathrm{d}N_{\mathrm{Er}}}{\mathrm{d}t} = -\frac{N_{\mathrm{Er}}}{\tau_{\mathrm{Er}}} - \frac{N_{\mathrm{Cr}}}{\tau_{\mathrm{Cr}}} - \frac{\mathrm{d}N_{\mathrm{Cr}}}{\mathrm{d}t},\tag{10}$$

where $N_{\rm Er}$ and $N_{\rm Cr}$ are the numbers of excited Er and Cr ions. Temporal dependence of Cr decay is known (Eqs. (6) and (7)), and Eq. (10) is a linear differential equation of first order. Solving the equation with the initial conditions $N_{\rm Cr} = N_{\rm Cr}(0)$

Fig. 5. Dependence of Cr^{4+} quantum efficiency (dashed line) and quantum efficiency of Cr-Er energy transfer (solid line) on Er^{3+} concentration.

and $N_{\text{Er}} = N_{\text{Er}}(0)$ at t = 0, we now obtain the temporal evolution of the Er population

$$N_{\rm Er}(t) = N_{\rm Er}(0) \exp\left(-\frac{t}{\tau_{\rm Er}}\right) + N_{\rm Cr}(0)$$
$$\times \int_0^t \frac{\gamma}{2\sqrt{t'}} \exp\left(-\frac{t'}{\tau_{\rm Cr}} - \gamma\sqrt{t'} - \frac{t-t'}{\tau_{\rm Er}}\right) dt',$$
(11)

where the first term is the decay of Er ions excited directly through Er absorption bands, and the second term is the time dependence of the number of excited Er ions that have received excitation through Cr ions. This temporal evolution of Er (Eq. (11)) was obtained under instantaneous excitation. For an arbitrary profile of the optical excitation pulse $\phi(t)$ it can be generalized as [18]

$$N_{\rm Er}^*(t) = \int_0^t N_{\rm Er}(t) \varphi(t-\tau) \, \mathrm{d}\tau.$$
 (12)

At cw-pumping, the excited population of Er^{3+} ions can be expressed using quantum efficiencies of energy transfer [18]

$$N_{\rm Er} = P_{\rm Er} \tau_{\rm Er} + P_{\rm Cr} \tau_{\rm Er} \eta_{\rm Cr-Er}, \tag{13}$$

where $N_{\rm Er}$ is the excited population of ${\rm Er}^{3+}$ ions, $P_{\rm Er}$ is the power (photons/s) absorbed directly by ${\rm Er}^{3+}$ absorption bands, and $P_{\rm Cr}$ is the power of pumping absorbed by ${\rm Cr}^{4+}$ absorption bands. If pumping is performed only through ${\rm Cr}^{4+}$ absorption bands, the first term in Eq. (13) becomes equal to zero and the ratio of excited population of ${\rm Er}^{3+}$ to ${\rm Cr}^{4+}$ ions is

$$R = \frac{\tau_{\rm Er} \eta_{\rm Cr-Er}}{\tau_{\rm Cr} (1 - \eta_{\rm Cr-Er})}.$$
(14)

Even at relatively low Er^{3+} concentration, where the efficiency of Cr–Er transfer is small, the excited population of Er^{3+} is much higher than the excited population of Cr^{4+} because the lifetime of the Er^{3+} metastable level is almost three orders of magnitude greater than the lifetime of the Cr^{4+} metastable level.

The ratio of small gain coefficients of the Er³⁺ and Cr⁴⁺ bands (at 1.55 µm for Er³⁺, ⁴I_{13/2}-⁴I_{15/2} transition, and at 1.3 µm for Cr⁴⁺, ³T₂-³A₂ transition) will be ($\sigma_{\text{Er}}/\sigma_{\text{Cr}}$)*R*, where σ_{Er} and σ_{Cr} are the emission cross-sections and *R* is determined by Eq. (14). To get the same gain coefficients at 1.3 and 1.55 µm, *R* should be $\sigma_{\text{Cr}}/\sigma_{\text{Er}} = 100$ (we used $\sigma_{\rm Cr}$ from [5], and $\sigma_{\rm Er}$ was determined in this paper). Using Eq. (14) we obtain $\eta_{\rm Cr-Er} \sim 0.09$ and, using Fig. 5, the Er³⁺ concentration equal to ~0.1 wt%.

In conclusion, the optical properties of Ca₂GeO₄ crystals co-doped with Cr^{4+} ions and Er^{3+} ions were investigated. The maximum emission cross-section of Er^{3+} for the ${}^{4}I_{13/2} - {}^{4}I_{15/2}$ electronic transition is $\sim 8 \times 10^{-21}$ cm². The emission spectrum of Ca_2GeO_4 crystals doped with both Cr^{4+} and Er^{3+} consists of a Cr⁴⁺ fluorescence band located at 1280 nm and an Er³⁺ fluorescence band located at 1550 nm; the relative intensity of the bands depends on Er³⁺ concentration. Pumping in the Cr⁴⁺ absorption band populates both Cr^{4+} centers and Er^{3+} centers due to efficient energy transfer from the Cr⁴⁺ ion to the Er^{3+} ion. At Er^{3+} concentration ~0.1 wt%, the maximum gain coefficients for the 1.3 μ m Cr⁴⁺ and the 1.55 μ m Er³⁺ emission bands are the same, and Cr, Er : Ca₂GeO₄ crystal can be used as active optical media for simultaneous operation at Cr⁴⁺ and Er³⁺ emission bands with equal gain coefficients. At Er³⁺ concentration more than 2 wt%, the quantum efficiency of Cr-Er energy transfer exceeds 90%, and therefore broadband Cr absorption can be used (perfectly matching the frequency of the pump source) for effective pumping of Er^{3+} ions if only Er^{3+} operation is necessary.

The spectrum of the Cr^{4+} : Ca_2GeO_4 crystals codoped with Er^{3+} matches well both the 1300 mm and 1550 nm telecommunications windows – extending the bandwidth – and may make this co-doped crystal useful as an active medium for optical communications devices in both spectral regions.

Acknowledgements

The Army Research Office, the National Science Foundation, and the Research Foundation of

the City University of New York supported this research.

References

- V. Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, Appl. Phys. Lett. 52 (1988) 1040.
- [2] J. Koetke, S. Kück, K. Peterman, G. Huber, G. Crullo, M. Danailov, V. Magni, L.F. Qian, O. Svelno, Opt. Commun. 101 (1993) 195.
- [3] V. Petricevic, A.B. Bykov, A. Seas, R.R. Alfano, Di Yao, L.L. Isaacs, G.V. Kanunnikov, in: CLEO'97, OSA Technical Digest Series, vol. 11, 1997, p. 489.
- [4] M.F. Hazenkamp, H.U. Güdel, M. Atanasov, U. Kesper, D. Reinen, Phys. Rev. B 53 (1996) 2367.
- [5] V. Petricevic, A. Bykov, J.M. Evans, R.R. Alfano, Opt. Lett. 21 (1996) 1750.
- [6] J.M. Evans, V. Petricevic, A.B. Bykov, R.R. Alfano, Opt. Lett. 22 (1997) 1171.
- [7] Bing Xu, J.M. Evans, V. Petricevic, S.P. Guo, O. Maksimov, M.C. Tamargo, R.R. Alfano, Appl. Opt. 39 (27) (2000) 4975.
- [8] B.R. Judd, Phys. Rev. 127 (1962) 750.
- [9] G.S. Ofelt, J. Chem. Phys. 37 (1962) 11.
- [10] W.F. Krupke, IEEE J. Quantum Electron. QE-7 (1971) 153.
- [11] A. Kaminskii, Laser Crystals their Physics and Properties, Springer, Berlin, 1996.
- [12] B.F. Aull, H.P. Jenssen, IEEE J. Quantum Electron. QE-18 (1982) 925.
- [13] G. Huber, W.W. Kruhler, W. Bludau, H.G. Danielmeyer, J. Appl. Phys. 46 (8) (1975) 3580.
- [14] Yu.K. Voronko, T.G. Mamedov, V.V. Osiko, A.M. Prokhorov, V.P. Sakun, I.A. Schrbakov, Sov. Phys. JETP 44 (2) (1976) 251.
- [15] M.V. Artamonova, Ch.M. Briskina, A.I. Burshtein, L.D. Zusman, A.G. Skleznev, Sov. Phys. JETP 35 (1972) 457.
- [16] I.A. Bondar, A.I. Burshtein, A.V. Krutikov, L.P. Mezentseva, V.V. Osiko, V.P. Sakun, V.A. Smirnov, I.A. Shcherbakov, Sov. Phys. JETP 54 (1) (1981) 45.
- [17] Th. Förster, Ann. Phys. (Leipzig) 2 (1948) 55.
- [18] V.G. Ostroumov, Yu.S. Privis, V.A. Smirnov, I.A. Scherbakov, J. Opt. Soc. Am. B 3 (1) (1986) 81.