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The backscattering of circularly polarized light pulses from an infinite uniform scattering medium is studied
as a function of helicity of the incident light and size of scatterers in the medium. The approach considers a
polarized short pulse of light incident on the scattering medium, and uses an analytical cumulant solution of the
vector radiative transfer equation with the phase matrix obtained from the Mie theory to calculate the temporal
profile of scattered polarized photons for any position and any angle of detection. The general expression for
the scattered photon distribution function is an expansion in spatial cumulants up to an arbitrary high order.
Truncating the expansion at the second-order cumulant, a Gaussian analytical approximate expression for the
temporal profile of scattered polarized photons is obtained, whose average center position and half width are
always exact. The components of scattered light copolarized and cross polarized with that of the incident light
can be calculated and used for determining the degree of polarization of the scattered light. The results show
that circularly polarized light of the same helicity dominates the backscattered signal when scatterer size is
larger than the wavelength of light. For the scatterers smaller than the wavelength, the light of opposite helicity
makes the dominant contribution to the backscattered signal. The theoretical estimates are in good agreement
with our experimental results.

DOI: 10.1103/PhysRevE.74.056605 PACS number�s�: 42.25.Dd, 42.25.Ja, 42.68.Ay

I. INTRODUCTION

The recent increased interest in the study �1–12� of polar-
ized light propagation through turbid media derives from a
variety of practical applications. Polarized light multiple
scattered from a turbid medium carries information about the
medium interior �13� such as, particle size and concentration,
size distribution, and refractive index variation, which can be
useful for biomedical imaging �13–15�, endoscopic evalua-
tion of biological tissues �16�, investigation of biological cell
differentiation �17,18�, flow cytometry �18,19�, lidar-based
remote sensing of the atmospheric cloud, aerosol fog and
smog �20,21�, and imaging of targets in shallow coastal wa-
ter �22�. Polarization-sensitive imaging has been demon-
strated to enhance image contrast of targets embedded in
turbid media �14,23�.

In particular, it has been observed that for circularly po-
larized light, randomization of its polarization requires more
scattering events than the randomization of its direction
�23–27,6,9�. An important consequence of this “polarization
memory” �25� is higher resolution and contrast of transillu-
mination images recorded with copolarized light than those
recorded with unpolarized or cross-polarized light. Another
interesting feature is the dependence of the intensity of the
backscattered copolarized and cross-polarized light on the
size of the scatterers in the medium �23�. The backscattered
light is dominated by light of helicity opposite to that of the
incident light if the size of the scatterers is smaller than the
wavelength of light. The light of the same helicity dominates
when scatterers are larger than the light wavelength. These
results have important consequences in the design consider-
ations of imaging systems using backscattered light such as,
endoscopic systems. All these developments make it impera-

tive that theoretical formalisms be developed to provide a
quantitative explanation of the experimental results, and
guidance for the design of imaging systems using polarized
light.

Theoretical studies of polarized light propagation through
a scattering medium commonly starts with the vector radia-
tive transfer equation �VRTE� �1�, and because of the inher-
ent complexity of the problem, a limited number of studies
are available to date. A majority of these studies focused on
developing numerical solutions of the VRTE. Ishimaru and
co-workers first investigated the propagation of continuous
wave �CW�, polarized wave normally incident on a medium
with discrete scatterers using discrete ordinate methods to
solve VRTE �2,3�. More recently, they extended the formal-
ism to numerically solve the time-dependent VRTE to ac-
count for the propagation of polarized pulses �4�. Kim and
Moscoso studied the propagation of a linearly polarized or
circularly polarized continuous plane wave normally incident
on a plane-parallel medium containing a random distribution
of dielectric spheres, and numerically solved the one-
dimensional VRTE using a Chebyshev spectral method �5�.
The approach was subsequently modified to study the back-
scattering of circularly polarized plane-wave pulses �6�. Val-
lion et al. �7� used a vector Monte Carlo method to study
polarized light transport through a semitransparent medium
filled with scattering particles. Jiang et al. �8� developed a
multilayer radiative transfer model that takes into account
the state of polarization using the doubling-adding method
for passive atmospheric remote sensing applications. More
recently, Sakami and Dogariu �9� investigated the propaga-
tion of a polarized plane-wave pulse incident at any angle in
a random medium using the discrete-ordinates method to
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solve the VRTE, and used an angular analysis to obtain de-
tails of the polarization flip of circular polarized light. The
problem of light scattering and radiative transfer in scattering
media and its application to geophysical optics, image trans-
fer, remote sensing, and inverse problems are discussed in
the monograph by Kokhanovsky �10�.

In this paper, we use the analytical solution of the time-
dependent VRTE to compute backscattering of circularly po-
larized light in an infinite uniform scattering medium. It
builds on the analytical cumulant approach for solving the
time-dependent radiative transfer equation in an infinite uni-
form medium that we developed �28–30�. In this approach an
arbitrary phase function, as long as it is a function of scat-
tering angle, can be treated. We have derived the exact ex-
pression of spatial cumulants of photon distribution at any
angle and any time, up to an arbitrary high order. The exact
first spatial cumulant represents the center of the distribution
and the exact second spatial cumulant represents the width of
the distribution. The method of the analytical cumulant solu-
tion for the scalar radiative transfer equation can be extended
to the vector �polarized� case �31�. In the analytical solution
of VRTE, a transform to the circular representation from the
Stokes representation of polarization is introduced, and the
generalized spherical functions are used for angular expan-
sion, instead of the standard spherical functions for solving
the scalar radiative transfer equation. The expressions for the
exact first and second spatial cumulants of polarized compo-
nents as functions of angle s and time t is derived. Then,
intensity of the polarized light is presented by a Gaussian
spatial distribution. We apply this method to calculate the
backscattering of circular polarized light in a scattering me-
dium. The results show that circularly polarized light of the
same helicity dominates the backscattered signal when scat-
terer size is larger than the wavelength of light. For the scat-
terers smaller than the wavelength, light of opposite helicity
makes the dominant contribution to the backscattered signal.
The theoretical conclusion is in good agreement with our
experimental results �23�.

The paper is organized as follows. In Sec. II we review
the analytical solution of VRTE. In Sec. III, the numerical
results are presented and are compared with experiments.
Section IV is devoted to discussion and conclusion.

II. THEORETICAL FORMALISM

A. Polarized components of light

In the Stokes polarization representation �32� �SP�, the
polarized light is described by ISP= �I ,Q ,U ,V�. The polar-
ized components of distribution we will study are the parallel
component I� = �I+Q� /2, the perpendicular component I�

= �I−Q� /2, the right-circular component IR= �I+V� /2, and
the left-circular component IL= �I−V� /2, since these quanti-
ties are positive definite, and are experimentally measurable.

The vector radiative transfer equation for the polarized
photon distribution function I�r ,s , t� in an infinite uniform
medium, illuminated by a point light source providing short
pulse, I�0���r−r0���s−s0���t−0� is given by �33�

�I�r,s,t�/�t + cs · �rI�r,s,t� + �aI�r,s,t�

= �s� P�s,s���I�r,s�,t� − I�r,s,t��ds�

+ I�0���r − r0���s − s0���t − 0� , �1�

where vector I�r ,s , t� has four polarization components, c is
the light speed in the medium, �s is the scattering rate, �a is
the absorption rate, and P�s ,s�� is the 4�4 phase matrix. A
meridian plane parallel to the z axis and the light direction s,
is used as a plane of reference for the description of the
polarization state. In SP the components Q ,U vary with the
rotation of the reference plane around the light propagation
direction. With a rotation of reference plane through an angle
��0 �in the counterclockwise direction, when looking in the
direction of propagation� ISP varies as �I��SP=L���ISP,
where L��� is given by

L��� = �
1 0 0 0

0 cos 2� sin 2� 0

0 − sin 2� cos 2� 0

0 0 0 1
� . �2�

When light propagates along the z direction, Q ,U vary with
the change of the azimuthal angle �.

The phase matrix in the fixed coordinates is given by:

P�s,s�� = L�� − ��P�cos 	�L�− ��� , �3�

where 	 is the angle between light rays before and after
scattering in the scattering plane, and the matrices L�−���
and L��−�� are those required to rotate meridian planes
before and after scattering onto a local scattering plane. The
intrinsic property of a scattering mechanism is described by
the 4�4 scattering function P�cos 	�, which is assumed to
depend only on cos 	=s ·s�. It is convenient to use a repre-
sentation of the polarized light in which L��� is diagonal,
rather than Eq. �2�. A circular polarization representation
�CP�, first proposed by Kuščer and Ribarič �34� and pre-
sented by Hovenier and van der Mee �35�, is ICP

= �I2 , I0 , I−0 , I−2�, where I0= �I+V� /2, I−0= �I−V� /2, I2= �Q
+ iU� /2, and I−2= �Q− iU� /2, or ICP=TISP, with

T =
1

2�
0 1 i 0

1 0 0 1

1 0 0 − 1

0 1 − i 0
� and T−1 = �

0 1 1 0

1 0 0 1

− i 0 0 i

0 1 − 1 0
� .

�4�

In CP a rotation of the reference plane through an angle �
around the light direction causes Im

CP to be multiplied by
exp�−im��, m=2,0 ,0 ,−2. Notice that I0 and I−0 actually
have the same rotational property. For the phase matrix,
transform between two representations is PCP=TPSPT−1.

In CP it is convenient to expand the phase matrix PCP

using the generalized spherical functions �GSF�. The gener-
alized spherical functions Pmn

l �
� are related to the dmn
l �
�
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in the angular momentum theory �36� by Pm,n
l �
�

= �i�m−ndmn
l �
�. In the Appendix, the expressions for dmn

l �
�
are presented.

B. Phase matrix using Mie theory

Elements of the CP phase matrix in the scattering plane,
Pmn

CP�cos 	� can be expanded by GSF;

Pmn
CP�cos 	� =

1

4�
	

l

�mn
l Pm,n

l �cos 	� , �5�

with m ,n=2,0 ,−0 ,−2, and l�max�
m
 , 
n
�. The coeffi-
cients �mn

l provide a description of the scattering mechanism.
In most useful cases, the coefficients �mn

l have properties:
�i� �mm

l =�m−m
l are real; �ii� �mn

l =�nm
l =�−m−n

l ; �iii� �20
l

= ��2−0
l �* � * means complex conjugate�. Therefore, for each

l�2, there are six independent real elements: �00
l , �22

l , �0−0
l ,

�2−2
l , Re��20

l �, and Im��20
l �. For l=0,1, only �00

l and �0−0
l are

nonzero. These numerical coefficients can be calculated us-
ing the Mie theory for a spherical particle. We have �00

l

= ��1
l +�4

l � /2, �0−0
l = ��1

l −�4
l � /2, �22

l = ��2
l +�3

l � /2, �2−2
l = ��2

l

−�3
l � /2, Re��20

l �=
1
l , Im��20

l �=
2
l , where the coefficients

�1,2,3,4
l and 
1,2

l are formulated in Eqs. �4.81�–�4.86� in Ref.
�37�.

C. Photon angular distribution F„s , s0 , t…

When we make a spherical harmonics expansion of Eq.
�1�, the difficulty is that the term cs ·�rI�r ,s , t� couples
equations of different harmonics. We first study the photon
distribution in the angular space in CP initially incident along
s0,

F�s,s0,t� =� I�r,s,t�dr , �6�

where integration is over the whole space. Evaluation of the
integral in Eq. �6� over Eq. �1� leads to

�F�s,s0,t�/�t + �aF�s,s0,t�

+ �s�F�s,s0,t� −� P�s,s��F�s�,s0,t�ds��
= I�0���s − s0���t − 0� . �7�

The gradient term disappears in Eq. �7� because of the
Gauss-Stokes law. Hence, F�s ,s0 , t� can be exactly solved by
expanding in GSF’s. When s0 is set along the z direction, the
initial polarization state is set as n0, and the initial reference
plane is set as the x-z plane, we have

Fmn0
�s,s0,t� = 	

l
�Fmn0

l �t�Pm,n0

l �cos ��

− �m,n0

2l + 1

4�
e−�stP0,0

l �cos ���
�exp�− in0��exp�− �at� , �8�

where s= �� ,��, and m ,n0=2 ,0 ,−0 ,−2, l�max�
m
 , 
n0
�.
The second term in Eq. �8� represents the ballistic �unscat-
tered� component of photons. Fmn0

l �t� in Eq. �8� is the solu-
tion of the equation

dFmn0

l �t�/dt = 	
n


mn
l Fnn0

l �t� , �9�

under the initial condition

Fmn0

l �t = 0� = �m,n0
�2l + 1�/4� , �10�

where 
mn
l =�s��m,n−�mn

l / �2l+1��. The solution Fmn0

l �t� has
the following form:

Fmn0

l �t� =
2l + 1

4�
	

i

�Bmn0

l �i exp�− �i
lt� , �11�

i=1,2 ,3 ,4 for l�2, and i=1,2 for l=1,2. The eigenvalues
�i

l for l�2 is given by

�i
l = �1/2�
�
00

l + 
22
l ± 
0−0

l ± 
2−2
l �

+ ��
00
l − 
22

l ± 
0−0
l � 
2−2

l �2

± 16�Re�
20
l �

Im�
20
l �
�2�1/2� , �12�

for i=1,2, and for i=3,4, the sign � before the square
brackets in Eq. �12� is replaced by �. For l=0,1 two eigen-
values are �i

l=
00
l ±
0−0

l . The constant coefficients �Bmn0

l �i

can be determined using linear algebra under the initial con-
dition Eq. �10� �31�.

In SP the angular distribution component of Im
= �I ,Q ,U ,V�, with the initial polarized state ISP�0�, is ob-
tained by

Fm
SP�s,s0,t� = �T−1F�s,s0,t�TISP�0��m. �13�

The angular distribution for the parallel polarized compo-
nent is given by F��s ,s0 , t�= �FI

SP�s ,s0 , t�+FQ
SP�s ,s0 , t�� /2.

Similarly, we have F�= �FI
SP−FQ

SP� /2, FR= �FI
SP+FV

SP� /2,
and FL= �FI

SP−FV
SP� /2.

D. The cumulant expansion

The polarized photon distribution Im�r ,s , t� in an infinite
uniform medium can be written as �31�

Im�r,s,t� =���r − c�
0

t

s�t��dt����s�t� − s��
m

, �14�

where �¯� means the ensemble average in the angular space.
We perform a Fourier transform of the first � function, then
make a cumulant expansion, and obtain
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Im�r,s,t� = Fm�s,s0,t�
1

�2��3 � dq exp
iq · r

+ 	
k=1

�
�− ic�k

k! 	
jk

¯ 	
j1

qjk
¯ qj1

� ���
0

t

dtk ¯ �
0

t

dt1T�sjk
�tk� ¯ sj1

�t1���
c
�

m

� ,

�15�

where T denotes time-ordered multiplication �38�, and the
subscript-index c denotes cumulant. The cumulants are re-
lated to the moments. For an arbitrary random variable A, we
have �A�c= �A�, �A2�c= �A2�− �A��A�, and so on. The corre-
sponding moment can be estimated using a standard time-
dependent Green’s-function approach, which is given by

���
0

t

dtk ¯ �
0

t

dt1T�sjk
�tk� ¯ sj1

�t1����
m

=
1

Fm�s,s0,t�
��0

t

dtk�
0

tk

dtk−1 ¯ �
0

t2

dt1� ds�k�

�� ds�k−1�
¯� ds�1�F�s,s�k�,t − tk�sjk

�k�

�F�s�k�,s�k−1�,tk − tk−1�sjk−1

�k−1�
¯ F�s�2�,s�1�,t2 − t1�sj1

�1�

�F�s�1�,s0,t1 − 0�I�0��
m

+ �perm�� , �16�

where the abbreviation “perm” means all k!−1 terms ob-
tained by permutation of �ji�, i=1, . . . ,k from the first term,
and F�s�i� ,s�i−1� , ti− ti−1� is the exact solution given by Eq. �8�
in Sec. II C. If we cut off the summation in Eq. �15� at k
=2, the integration leads to a Gaussian spatial distribution
characterized by the first and second cumulants.

1. First cumulant (center of the spatial distribution)

In CP it is convenient to set s in a spherical harmonic
basis,

s = �s1,s0,s−1� = �− 2−1/2 sin �e+i�,cos �, + 2−1/2 sin �e−i�� ,

�17�

which is related to Cartesian component basis �=x ,y ,z by
s�=	U�jsj, j=1,0 ,−1 with

U = 2−1/2�− 1 0 1

i 0 i

0 21/2 0
� . �18�

Using the recurrence relation and the orthogonality relation
of GSF, the unnormalized first moment in CP, when s0 is
along the z direction, is obtained;

�R j�mn0
= c�

0

t

dt�� ds�	
n

Fmn�s,s�,t − t��sj�Fnn0
�s�,s0,t��

= c	
l

Pm,n0−j

l �cos ��e−i�n0−j��� j	
n

	
h

2�l − h� + 1

4�

�Dm,n,n0

l,h �t��l − h,1,n,0
l,n��l − h,1,n0,− j
l,n0 − j�

− � j,0�m,n0

2l + 1

4�
te−�stP0,0

l �cos ��e−in0�� , �19�

with �±1= � i, �0=1, �l1 , l2 ,m1 ,m2 
L ,M� is Clebsch-Gordan
coefficients in angular momentum theory �36�, presented in
the Appendix, and

Dm,n,n0

l,h �t� = 	
i,j

�Bmn
l �i�Bnn0

l−h� j� exp�− � j
l−ht� − exp�− �i

lt�
�i

l − � j
l−h �

�exp�− �at� , �20�

where i , j=1,2 ,3 ,4 for l�2, and i , j=1,2 for l=1,2.
In SP the component of the unnormalized first moment of

Im= �I ,Q ,U ,V�, with the initial polarized state ISP�0�, and �
=x ,y ,z, is obtained by

�R��m
SP = 	

j

U�j�T−1�R j�TISP�0��m. �21�

The center of photon distribution for the linearly polarized
components is obtained by

Rp,�
c �s,t� =

��R��I
SP ± �R��Q

SP�
2Fp�s,s0,t�

, �22�

where the � sign holds for the p= � component, and the �
sign holds for the p=� component. The center of photon
distribution for the circularly polarized components is ob-
tained by

Rc,�
c �s,t� =

��R��I
SP ± �R��V

SP�
2Fc�s,s0,t�

, �23�

where the � sign holds for the c=R component, and the �
sign holds for the c=L component.

2. Second cumulant (width of the spatial distribution)

Similarly, we can obtain the expression for the unnormal-
ized second moment in CP,
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�R j2
R j1

�mn0
= c2	

l

Pm,n0−j1−j2

l �cos ��e−i�n0−j1−j2��� j2
� j1	

n2

	
n1

	
h2

	
h1

2�l − h2 − h1� + 1

4�

� Em,n2,n1,n0

l,h2,h1 �t��l − h2,1,n2,0
l,n2��l − h2,1,n0 − j1,− j2
l,n0 − j1 − j2��l − h2 − h1,1,n1,0
l − h2,n1�

��l − h2 − h1,1,n0,− j1
l − h2,n0 − j1� − � j2,0� j1,0�m,n0

2l + 1

4�

t2

2
e−�stP0,0

l �cos ��e−in0�� , �24�

with

Em,n2,n1,n0

l,h2,h1 �t� = 	
i,j,f

�Bmn2

l �i�Bn2n1

l−h2� j�Bn1n0

l−h2−h1� f exp�− �at�

� � exp�− � f
l−h2−h1t� − exp�− �i

lt�
�� j

l−h2 − � f
l−h2−h1���i

l − � f
l−h2−h1�

−
exp�− � j

l−h2t� − exp�− �i
lt�

�� j
l−h2 − � f

l−h2−h1���i
l − � j

l−h2�
� , �25�

where i , j , f =1,2 ,3 ,4 for l�2, and i , j , f =1,2 for l=1,2.
In SP the component of the unnormalized second moment

of Im= �I ,Q ,U ,V�, with the initial polarized state ISP�0�, is
obtained by

�R�R
�m
SP = 	

j1

	
j2

1

2
�U�j1

U
j2
+ U�j2

U
j1
�

��T−1�R j2
R j1

�TISP�0��m. �26�

The square of the width of the photon distribution for the
linearly polarized component is determined by

Dp,�
�s,t� =
��R�R
�I

SP ± �R�R
�Q
SP�

2F��s,s0,t�
−

1

2
Rp,�

c Rp,

c , �27�

where the � sign holds for the p= � component, and the �
sign holds for the p=� component. The square of the width
of photon distribution for the circularly polarized compo-
nents is obtained by

Dc,�
�s,t� =
��R�R
�I

SP ± �R�R
�V
SP�

2Fc�s,s0,t�
−

1

2
Rc,�

c Rc,

c , �28�

where the � sign holds for the c=R component, and the �
sign holds for the c=L component.

F. Gaussian distribution of the polarized light

Polarized photon intensity I��r ,s , t�, �= � , � ,R ,L, is ex-
pressed by an approximate Gaussian distribution,

I��r,s,t� =
F��s,s0,t�
�4��3/2

1

�det D��1/2 exp
	
�


−
1

4
��D��−1��


��r� − R�,�
c ��r
 − R�,


c �� . �29�

The ballistic component has been subtracted in the ex-
pressions for the angular distribution Eq. �8�, for the first
cumulant Eq. �19�, and for the second cumulant, Eq. �24�.
This subtraction ensures that the summation over l converges
even at very early times, as discussed in Sec. III of Ref. �30�.

In the case of the transmission of light, the formalism
produces the correct first and second cumulants, but the
Gaussian-shaped distribution obtained for early times vio-
lates causality, as manifested by the photons at the front edge
of the distribution traveling faster than the speed of light in
free space. We have introduced an approach to reshape the
distribution in Ref. �30�, which maintains the correct center
position and width of spread of the distribution, and satisfies
the causality condition. This technique can be extended to
include polarization, combining the formula for the calcula-
tion of cumulants of polarized components, in the study of
transmission of linear and circular polarized light.

III. RESULT

A. Theoretical result

We now use the formalism developed in Sec. II to study
backscattering of circularly polarized light in a scattering
medium. A right circularly polarized beam of light with ini-
tial Stokes parameters I= �1,0 ,0 ,1� and wavelength �
=610 nm is assumed to be injected into an infinite medium
comprised of polystyrene spheres �with refractive index m
=1.59� suspended in water �with refractive index m0=1.33�.
The absorption coefficient of light in the medium is assumed
to be zero. The light is incident along the z axis from the
origin �x ,y ,z�= �0,0 ,0�. The backscattered light is received
by a detector located at �xd ,0 ,0�. Figure 1 shows the com-
puted time-resolved profiles of circularly polarized backscat-
tered light as a function of time t �in a unit of ltr /c�, collected
at direction �=180° and position xd=0.5ltr, where ltr is the
transport mean free path, for polystyrene spheres of diameter
�a� d=0.10 �m, �b� d=0.213 �m, �c� d=0.855 �m, and �d�
d=8.0 �m. A remarkable feature is that the backscattered
signal is dominated by the left circular polarized �LCP� light
if the size of scatterers is small compared to the wavelength
of light, as shown in Figs. 1�a� and 1�b�, but it is dominated
by the right circular polarized �RCP� light if the size of scat-
terers is large, as displayed in Figs. 1�c� and 1�d�. Figure 2
shows how the peak intensity of RCP light and LCP light
vary with the size of scatterers.
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We explain this phenomenon by considering the effect of
Mie single scattering together with the effect of multiple
scattering. The Mie formula indicates that when m /m0
=1.19, for small particles the Stokes V component is nega-
tive for � larger than 90°, which means that the helicity of

light singly backscattered from a small particle will flip. As
the particle size increases, the helicity of the near-backward
scattered light computed using Mie formula becomes oscil-
lating, and the region of negative V squeezes to a range near
�=180°. For near-forward scattering, the value of V is posi-
tive, hence, the helicity does not flip. For large particles the
anisotropy factor g is large, and the probability of near-
forward scattering is high. For large particles compared to �,
backscattering results from the accumulated effect of many
small-angle �near-forward� scattering events, each of which
changes the direction only slightly. These small-angle scat-
tering events do not change the helicity of circularly polar-
ized light. Hence, the backscattered light is dominated by the
component that maintains the original helicity. When par-
ticles are small, however, the events with large-angle scatter-
ing play a more important role. The backscattered light is
dominated by the component with the flipped helicity.

In view of the above explanation, it is expected that cir-
cularly polarized light with reversed helicity dominates only
when the detector is located close to the source. When the
distance between the source and the detector becomes large,
more backscattered photons come from the accumulation of
many small-angle scattering events, and those retain the
original helicity. Figure 3 shows the computed time-resolved
profiles at different source-detector distances: �a� xd=0.1ltr,
�b� xd=0.2ltr, �c� xd=1.0ltr for a fixed-particle diameter, d
=0.7 �m, and detection angle �=180°. We see that the
dominant component changes from LCP to RCP as the
source-detector distance increases. Figure 4 shows the back-
scattered time profiles for different detection angles: �a�
cos �=−1, �b� cos �=−0.9, �c� cos �=−0.8, for particle diam-
eter d=0.855 �m and the source-detector distance xd=1.0ltr.
While total intensity increases with a decrease of angle �, the
RCP component remains dominant, which indicates that the
helicity of backscattered light is not sensitive to the angle.

FIG. 1. �Color online� Time-resolved profiles of RCP �solid
curve� and LCP �dotted curve� backscattered light intensity as func-
tions of time t �in the unit of ltr /c�, received at angle �=180° and
detector position xd=0.5ltr, where ltr is the transport mean free path,
for different diameters of scatterers: �a� d=0.10 �m, �b� d
=0.213 �m, �c� d=0.855 �m, and �d� d=8.0 �m. The initial
Stokes parameters I= �1,0 ,0 ,1� represent a RCP light beam inci-
dent along the z direction, and the wavelength �=610 nm.

FIG. 2. �Color online� The peak intensity of the time-resolved
profile of RCP and LCP backscattered light as functions of d /�, at
angle �=180° and detector position xd=0.5ltr. The incident beam is
RCP.
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B. Comparison with experiments

We compare the above theoretical result with that of our
experiments �23�. The setup for the time-resolved back-
scattering experiment is schematically shown in Fig. 5. The
sample comprises polystyrene spheres suspended in deion-
ized water in a 6�6�10 cm3 glass cell. Ultrashort light
pulses of 100 fs duration are generated at a repetition rate of
82 MHZ with wavelength �=610 mn by a colliding pulse
mode-locked dye laser. A quarter-wave plate is used to obtain
RCP light. Time-resolved circularly polarized backscattered
light is monitored by a 2 ps resolution streak camera.

Figure 6 shows the time-resolved profiles of backscattered
light measured separately, with �a� small particles
d=0.213 �m �g=0.389�, scattering coefficients
�s /c=0.61 cm−1 �ltr=2.68 cm�, and �b� large particles
d=8.0 �m �g=0.911�, scattering coefficients

�s /c=0.61 cm−1 �ltr=18.42 cm�. The detected backscattered
light is dominated by the LCP �dotted curve� for small par-
ticles in case �a�, but it is dominated by the RCP �solid curve�
for large particles in case �b�, even though the average xd / ltr
for case �b� is much smaller than that for case �a�. Figure 7
shows a comparison of normalized circularly polarized inten-
sity of theoretical and experimental results for the case of
d=8.0 �m �d /�=13.11�. Considering the differences be-
tween the theoretical parameters and the experimental setup
�not an infinite medium, uncertainty in source-detector dis-
tance� theoretical predictions are in reasonable agreement
with the experimental result.

FIG. 3. �Color online� Time-resolved profiles of RCP �solid
curve� and LCP �dotted curve� backscattered light as functions of
time t, at different source-detector distances: �a� xd=0.1ltr, �b� xd

=0.2ltr, �c� xd=1.0ltr, for particle diameter d=0.7 �m, the detection
angle �=180°, and the wavelength �=610 nm. The incident beam
is RCP.

FIG. 4. �Color online� Time-resolved profiles of RCP �solid
curve� and LCP �dotted curve� backscattered light as functions of
time t, at different angles: �a� cos �=−1, �b� cos �=−0.9, �c� cos �
=−0.8, for the particle’s diameter d=0.855 �m, the detector posi-
tion xd=1.0ltr, and the wavelength �=610 nm. The incident beam is
RCP.
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IV. DISCUSSION

A detailed theoretical formalism for the calculation of the
distribution of polarized light intensity scattered from an in-
finite uniform turbid medium has been presented. The for-
malism is based on an analytical cumulant solution of the
vector radiative transfer equation for an arbitrary phase ma-
trix. It is then specialized for a phase matrix obtained from
the Mie theory since many practical applications deal with
Mie-scattering cases. The scattered polarized photon distri-

bution depends on the size of the scatterers, the distance
between the light source and the detector, as well as, on the
detection angle.

The advantage of the analytical cumulant solution is that
it enables the fast and accurate calculation of the temporal
profile of scattered polarized photon distribution. The use of
Stoke’s representation allows the investigation of light of any
polarization state, including linear polarization and circular
polarization, which are commonly used in practical applica-
tions. We have used a collimated ultrashort input pulse in our
formalism, which represents the experimental conditions us-
ing picosecond and femtosecond lasers more closely than the
plane wave cases used by earlier works �1–6,8,9�. In our
formalism, the linear polarization case is handled by setting
the initial Stokes vector as �1, 1, 0, 0�. Our initial results for
linear polarization are in good agreement with earlier results
�4,5�.

In this paper, the focus has been on the calculation of
circularly polarized light intensity in the backscattering ge-
ometry. The formalism enables the calculation of the inten-
sity distribution of multiple backscattered light components
that are copolarized and cross polarized with the incident
beam for different angles of detection and for different
source-detector positions. It is applicable for the analysis of
three-dimensional spatially resolved measurements of char-
acteristics of scattering media, such as satellite-based lidar
measurements of clouds and aerosols. The approaches using
a plane-wave incident beam calculate the backscattered pho-
ton flux at the plane of incidence �z=0 plane�, and simplify
the three-dimensional probing problem as a one-dimensional
problem �2–6,8,9�. The approaches using Monte Carlo simu-
lation can also handle three-dimensional spatially resolved
measurements, but require a long computation time
�7,39,40�.

Once the copolarized and cross-polarized scattered inten-
sity distributions are calculated, parameters, such as the de-
gree of polarization and image contrast can be readily calcu-
lated to take advantage of the polarization memory effect

FIG. 5. Schematic diagram of the experimental setup for the
time-resolved polarized backscattering measurement �BS=beam
splitter, L=lens, M=mirror�.

FIG. 6. The experimental time-resolved profiles of RCP �solid
curve� and LCP �dotted curve� backscattered light as functions of
time t for �a� small particles d=0.213 �m �g=0.389�, the scattering
coefficients �s /c=0.61 cm−1 �ltr=2.68 cm�, �b� large particles d
=8.0 �m �g=0.911�, �s /c=0.61 cm−1 �ltr=18.42 cm�. The incident
beam is RCP.

FIG. 7. �Color online� Comparison of theoretical and experi-
mental results of normalized circular polarized light intensity for
the medium with a particle diameter d=8.0 �m and wavelength �
=610 nm. The incident beam is RCP.
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�25�. One of the results of this work elucidates the depen-
dence of the relative intensities of the backscattered copolar-
ized and cross-polarized light on the size of the scatterers in
the turbid medium. We find that when the incident light is
right circularly polarized, the backscattered signal is domi-
nated by LCP light if the size of scatterers is smaller than the
wavelength of light, but it is dominated by RCP light if the
scatterer size is larger than the wavelength of light. The con-
clusion is in good agreement with our experimental results
�23�. The dependence of the helicity of circularly polarized
backscattered light on the scatterer size, and the polarization
memory effect have been investigated by other authors
�6,9,25–27,41�. Mackintosh et al. �25� experimentally dem-
onstrated the polarization memory effect for spherical par-
ticles suspended and undergoing Brownian motion in a liquid
by fitting a simple diffusion-based model to account for tem-
poral correlations of the intensity fluctuations for different
polarization channels. The theoretical estimation of back-
scattering of the circular polarized light using the numerical
solution of the VRTE has been performed by Kim and
Moscoso �6�, as well as Sakami and Dogariu �9�, which has
been mentioned earlier in the Introduction. Phillips et al. �41�
used an electric-field Monte Carlo method to study the back-
scattering of circularly polarized beams normally incident on
a half space of scattering particles and found that the back-
scattered light of the same helicity formed a ring centered on
the point of incidence. A Monte Carlo approach has been
used by other researchers as well �7,39,40�. Xu and Alfano
�27� used a random-walk approach to analytically estimate
the characteristic depolarization length, which is obtained as
an average over the entire detection solid angle. All these
approaches converge on the general result that the circularly
polarized light of the same helicity dominates backscattering
when the scatterer size is larger than the light wavelength, as
does the formalism presented in this paper and experimental
results �23�. The salient feature of this work is that it pro-
vides an analytical approach for the calculation of polarized
scattered light intensity, an experimentally measurable quan-
tity, as a function of time, detection angle, and source-
detector separation.

The dependence of the polarized backscattered light on
the size of the scatterers in the medium has many potential
applications, including biomedical imaging �13–15�, flow cy-
tometry �18,19�, investigation of biological cell differentia-
tion �17,18�, subsurface imaging of cracks and corrosion be-
low paint layers �42,43�, lidar-based remote sensing of
investigation of cloud and aerosol distribution in atmosphere
�20,21�, and the imaging of targets in turbid water �22�.

Biomedical and biophysical applications represent an in-
creasingly important area of application of polarized light
scattering. As early as 1976, polarized light scattering was
identified as a “new biophysical tool” �6�. The scatterers in
biological materials include cells, cell nuclei, mitochondria
that are in the Mie scattering domain �typical size varies
from 5–20 �m as compared to the wavelength of light in the
visible to NIR of 0.5–1.5 �m�. Polarization effects in scat-
tered light have been used to study bacterial suspensions in
water �16,19�, distinguish between a number of leukocyte
types in flow cytometry �44,18�, cell differentiation �17�, and
polynucleosome superstructures �45�. It has recently been

shown experimentally that backscattered light may be ana-
lyzed to obtain information about the size distribution of the
cell nuclei �15,46�, which in turn could be useful for cancer
detection as the cell nucleus size, shape, and distribution
changes with cancer progression. In biomedical imaging ap-
plications polarization effects in scattering have been shown
to be useful in examining skin �47�, and subsurface struc-
tures in the prostate and other tissues �48�.

Another important area of application of polarized light
scattering is the remote sensing of the atmosphere and earth.
Radar technology, the workhorse for remote sensing of the
earth and the atmosphere, makes use of radio waves and its
depolarization to obtain information about remote targets and
ground flora �49�. While single-scattering approximation of
radio waves is reasonable for radar applications �1�, for prob-
ing of dense cloud, fog, and aerosols in the atmosphere, mul-
tiple scattering of light needs to be considered, which the
formalism developed in this article does. Different scatterers
in the atmosphere have varied size distributions �1,50�, such
as cloud and fog droplets �radii generally �100 �m, mean
radii typically 2.5–5 �m�, aerosols �typically �1 �m�, and
hydrometeors �typically 1 �m or higher�. Lidar-based inves-
tigation of cloud, aerosols, and other atmospheric scatterers
employ visible and near-infrared light �typically 532 nm and
1064 nm� �20,51�. Scatterer size to wavelength ratio the dic-
tates the use of Mie theory for the study of light scattering by
clouds and aerosols. In the CALIPSO �Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations� mission of
NASA �51� one of the tasks involves probing with linearly
polarized 532 nm and 1064 nm nanosecond duration pulses
and the analysis of the temporal profiles of backscattered
light for assessing the vertical distribution of clouds and
aerosols in the atmosphere. Pal and Carswell �21� have ob-
served spatial variations in the polarization properties of
multiple-scattered light backscattered from clouds. Clearly
these types of experimental data and those obtained by ex-
tending measurements to even shorter pulses and circularly
polarized beams are fertile grounds for the application of the
formalism presented in this paper.
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APPENDIX: CLEBSCH-GORDAN COEFFICIENTS
AND d-FUNCTION

For the convenience of the reader, we list the formula of
angular momentum we used in this paper.

The following formula for Clebsch-Goldan coefficients
�l−h ,1 ,m ,−j 
 l ,m− j� are useful for our calculation,
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�l − h,1,m,− j
l,m − j� =��
�l − m��l − m + 1�

2l�2l − 1� �1/2 � �l + m��l − m + 1�
2l�l + 1� �1/2 � �l + m��l + m + 1�

�2l + 2��2l + 3� �1/2

� �l − m��l + m�
l�2l − 1� �1/2 m

�l�l + 1��1/2 − � �l + m + 1��l − m + 1�
�l + 1��2l + 3� �1/2

� �l + m��l + m + 1�
2l�2l − 1� �1/2

− � �l − m��l + m + 1�
2l�l + 1� �1/2 � �l − m��l − m + 1�

�2l + 2��2l + 3� �1/2 � , �30�

where the row index �from above� j=1,0 ,−1 and the column
index �from left� h=1,0 ,−1.

For obtaining dmn
l �x�, the following recurrence relation is

used:

dmn
l �x� =

1

�l − 1���l2 − m2��l2 − n2��1/2

� ��2l − 1��l�l − 1�x − mn�dmn
l−1�x�

− l���l − 1�2 − m2���l − 1�2 − n2��1/2dmn
l−2�x�� ,

�31�

for l�max�
m 
 , 
n 
 �, with

dmn
max�
m
,
n
��x� =

1

2max�
m
,
n
�� �2 max�
m
, 
n
��!
�
m − n
�!�
m + n
�!�1/2

��1 − x�
m−n
/2�1 + x�
m+n
/2, �32�

and dmn
l �x�=0 for l�max�
m 
 , 
n 
 �. For m=0, n=0 we have

d00
0 �x�=1, d00

1 �x�=x, and

ld00
l �x� = �2l − 1�xd00

l−1�x� − �l − 1�d00
l−2�x� . �33�
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