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The problem of the propagation of an intense ultrashort pulse in a cubic {x*) nonlinear medium is generalized to include
coupling between the primary and second harmonics signals. 1t is shown that the presence of a strong primary signal induces
the superbroadening of the spectrum of a weak second harmonic signal and the deformation of its pulse shape.

The study of the propagation of an ultrashort
pulse in a nonlinear medium provides the undertying
understanding to the problems of the generation of
the supercontinuum [1] and to the distortion of
pulses in long optical waveguides [2]. The oufstand-
ing experimental feature in both problems is the ex-
istence of asymmetry. In the supercontinuum spec-
trum, the spectral extents on the Stokes and anti-
Stokes sides differ by factors of nearly two [3]. In ex-
periments on pulse propagation in long optical fibers,
asymmetry in the pulse shape between the leading
and trailing edges of the pulse have been observed [4].
In recent publications 5] we considered the propaga-
tion of an ultrashort pulse in a nonlinear cubic medi-
um by the method of multiple scales [6]. We derived
a set of quasilinear partial differential equations, cor-
rect to second order in the nonlinear coupling con-
stant, that interrelates the pulse distortion and the
supercontinuum spectral distribution.

In this letter, we extended our formalism to inves-
tigate the pulse distortion and supercontinuum gen-
erated in a weak probe signal of a second harmonics
pulse induced by the presence of a strong primary
mode pump signal. The formalism is outlined, the
single mode results are reviewed, and the induced
pulse shape and generated supercontinuum of the sec-
ond harmonics are presented.

Nonlinear wave equation. The Maxwell equation in
a nonlinear medium, where the dispersion of the index
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of refraction and its imaginary part are neglected, is
given by

VIE-T " e T (EE)E, (1

where 1 is the linear index of refraction and n, is the
nonlinear index of refraction. The wave equation re-
duces to
alg 2 HHy 42
LB 729 \gpg, @)
c? ar?

22 ug ar2

under the assumption that one component of £ is pres-
ent and the transverse variation of E is neglected,
and (E°E) = |E[2/2.

To reduce the differential equation to a dimension-
less form, we introduce the new dimensionless varia-
bles @, T, Z defined as

T=tfry, Z= z/ngL , E=Ey®, 3)

where 7y_is the characteristic time associated with the
pulse {pulse width), v, is the group velocity in the me-
dium, and £} is the peak amplitude of the electric
field at the entrance plane of the medium. Introduc-
ing the dimensiontess nonlinear coupling constant e,
defined as

e=mlEy [2/n 4

the nonlinear wave equation in dimensionless form re-
duces to
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(021022 — 82[0T2)D = e(32/3T2)|0LD | (5)

The functional dependence of & on Z, T"and e, in
the solution of (5), is not disjoint. To first order in e,
% depends on the combinations of €7 and eZ as well
as the individual T, Z and e. Carrying the perturbation
to higher orders, © depends additionally on €2T, e2Z,
e T, €3Z, ... . Hence it is convenient to write ® as
®(Zy, T, Z1, Ty, Z9, T3, ...; €) where the new scaled
variables Z{, Ty, Zy, Ty etc. are defined as 7}, = ¢"'T
and Z,, = e Z. Next, we seek a uniform expansjon so-
lution to & in the form

B=Py+edy +e2Py + .., (6)

where the @, arc expressed as functions of the scaled
variables,

Substituting (6) in (5) and using the scaled varia-
bles, the terms multiplying e, ¢l, and ¢? give the fol-
lowing equations:

(@%/0z% — 8%3T8) By =0, (7)
(%1023 — 02 /913)®,

+2(0%/3Z,07Zy — 82 [T | 0Ty) D,

= (3)0T3)|®o 2oy , (8)
(@%/0z2 — 2 /aT})®, .

+2(8%02,0Z — 3%[aT, 0T,

+ @%f0z] — 0% [oT} + 202102902,

—20%0Ty0T,) %

= 2(2%/aT, 8T8y 123y + (8% /3T2)I®; [P®; . (9)

In what follows it is convenient to use a new coor-
dinate system which is moving with the pulse, Denot-
ing the new coordinates by U, and V,,, where U}, =
Z,— T, and V, = Z,, the above equations can re-
spectively be written in the new variables as:
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o

These equations will serve as the basis for obtaining
specific solutions to physical problems under consi-
deration,

Single-mode. In this section we review the results
for the pulse distortion and the spectral extent of the
generated supercontinuum for an ultrashort pulse
propagating in the medium,

The incoming pulse is described by

&y, = AU exp(iKU),  where f(U) = sech(U) . (10)

[ is the pulse form function, which we will assume for
simplicity to be hyperbolic secant, and W=cr =K =
k/ug?'.

Egs. {7a), (8a) and (9a) can be solved through the
ansatz

(I’O, =A(U1, Vl, U2, Vz) elkUo s

By = 21E, (U}, Vy, Uy, V) 6K Vo (i1)
"

The specific form of £, cannot be obtained from the
above equations, however for cases under consider-
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ation, where ¢ < 1, @ can be adequately approximated
by (IJO '
Denoting A by

A=qgele (12)

where @ is the amplitude and @ is the phase of the
pulse, 7 and o are functions of (U, V1, Uy, V3). The
quasilinear partial differeniial equations deduced
from the set (7a), (8a), (92) are given by

3afoV —2eatdafol=0, (13)
dafdV — LealdafoU = jeKa® — §e2Ka* . (14)
The solution of (13) with the boundary condition

(10} is given by [2]

a? = sech2(U +3eVe?) , (15)
where eV = my 1, I2Z/c'rL. This solution derived under
the condition of no dispersion and no absorption is
valid for all values of ¥ < ¥;;, where V. is the val-

ue for which 8a/0U is not finite, For values of V>

¥ rit» the above solution needs to be smoothed at the

discontinuity, The value of ¥ is given by
Vit ~ 2 V3~ 0.866 . (16)

The spectral distribution for the signal at the exit
plane of the mediwm is given by

S(w',7) = |E (', zg)l? (17)

where E(w', z,,) Is the time Fourier transform of the
electric field at z = z,, the exit plane,

Fw, 2= 5 Re [ 6l9"th(t,2,) dr, (18)

In the U—V coordinates, where W = cor and I/ '=w'r,
the expression for £ is given by

- 2% < . ,
W, v)=——Re [ du®-¥¥
X a(U, V) 2 WVe) | (19)

where ¥, corresponds to the ¥ of the exit plane.

The extent of the spectral distribution can be esti-
mated through the method of stationary phase, specif-
ically:

W' — Wantistokes ~ Max(@efal)y
W' — Wlgtokes ~ Min(defdl)y . (20)
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The general solution of « satisfying eq, (14) is giv-
en by

U

a=—KU—-§Kef a?(p, V) dp
0
¥V
~3Kk& [ *0,9)dq +KF(U, V), (21)
0

where the function FF(U, ¥) is a solution of the equa-
tion )

aF[3V —}eadFfal=0, (22)
The general solution of (22} is given by
¢ 14 U
F(f)y= F(g [ AW.adgt [ o, 0)dp ) ;
0 0 (23)

and the particufar solution of « satisfying the bound-
ary condition a(U/, Q) = 0 is written as

u
a=-KU~3Ke [ a*(p,V)dp
0
v ,
—3Ké? f a0, q) dq + K tanh~1 [sin AU, V)
0
+1Kesin (U, V), 24)
where
AU, VY=4h(U, V) +sin~Ltanh U,
V
nu,vy=e [ AU, q)dq.
0
The corresponding expression for the fzequency
sweep dofol/ is given by

dafdU= —K — 3 KeaX (U, V)
+Ka(U, V)[cos fU, ¥)] -1
+3Kea(U, V) cos iU, V). 25
Primary and second harmonics coupling. In this
section we consider the case of two pulses with fre-

quency distribution centered respectively at ¢ and
2¢o simultaneously entering the medium, The bound-
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ary condition at the entrance plane is ¥
Dy, = sech U elKU + § sech(1.760) e2 1KV | (26)

where § measures the relative strength of the second-
harmonic signal to the primary frequency signal.

Eqgs. (7a}, (8a) and (9a) can be solved for this case
through

@0 =2(U1, Vl’ U2, V2) eiKUU
+8B(UY, Vy, Uy, V) 21KV |

‘I’l = C(Vo, UI’ Vl’ Uz, Vz) e3iKU0 y

O, = 27 DUy, ¥y, Uy, V) KV0 @7
H

where A, B and C are the complex amplitudes asso-
ciated with the w, 2¢o and 3¢ signals respectively. As-
suming the velocity of propagation of the wave to be
the same for w and 2¢o in the medium, i.e., we are
neglecting more dispersion terms, the quasilinear par-
tial differential equations satisfied by @, &, b, and 8
defined by A =7 ¢i® and B = b ¢l8, are given by *2

dafdV — 3e[(3a2 +262b2)daf0U
+4525b3bfU] =0, (28)
BBV —ye(d? + 2620 )aq/oU
=$Ke(@2 +26202) - 52K (32 + 2520202, (29)
3BV —3e[(262b2 +2i2)dbfoU + 4abddfal] = 0,
(30)
3oV — 3e(5202 + 23 2)apfoU
=Ke(2a2 +62b2) —3e2K(6262 +242)2 . (31)

In the limit §2 < , the above equations reduce to
(i) for the strong wave

a3V — ed®adfoU=0, (28a)

*1 The incoming primary mode pulse form function is as-
sumed to be given by sech(I/) and the incoming second har-
monic pulse form function is assumed to be given by
sech(1.760/). See for example, ref. [7].

#2 The solutions presented here correspond to a nonlinear in-
dex of refraction snpyy, = 2 + 5 (2) cos ot 1 SHNL =
n(l), the solution, for § < 1,158 = 2a.
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OBJAV — Fed 23U =2Ked? —3Ke2d%,  (293)
(ii) and for the weak wave

3bjAV — eq2ob/dU — 2eabd 00U =0, (30a)

PV — ed2apfolU=2Ked? — e2Ki4 . (31a)

Note that both the amplitude and the phase of the
weak pulse are driven by the amplitude of the strong
wave. Eqgs. (28a) and (29a) are identical to (13) and
(14) and consequently & = ¢ and & = o,

The equations which determine C [defined in (27)]
have their source terms proportional to §2. The initial
condition for Cis C(U, 0) = 0. In the limit §2 <€ 1, C
= 0 is then the solution,

The general solutions for (30a) and (312) are given
by

U, VY=L{(U, V)a¥ (U, V) (32)

and

u
fU, VY= 2KU+4ek f a*(p, V) dp
0

¥
+3Ke? [ 44(0,4) dg +KL,(U, V), (33)
0

and where L and L satisfy the partial differential
equation

BL, BV — ea?dL,f0U=0. (34)
The solution of (34) is given by:
LU, VY=L

|14 u
=L(eéf a5(U,q)dq+6f a4(p,0)dp)

=L{g(U, V) + tanh U»—% tanh3) , (35)

where g(U, V)=¢ fg «8(U, ¢} dg. The particular so-
lutions for L; and L satisfying the boundary condi-
tions (26) and (U, 0) = 0 are given respectively by the
following parametric representation (where s is the
parameter):

L (x) = cosh4s sech(1.765) ,
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Ly(x)=2s—4etanhs, x=tanhs —§ tanh3s .
(36)

Using the above relations (U, ¥} is plotted in fig. 1
for different eV’ = angz!C'rL. Notice that the in-
duced steepening of the probe (weak signal) depends
on the infensity (OtEg) of the strong wave.

The frequency extent of the supercontinuum cen-
tered at 2¢v is given by the maximum and the mini-
mum of (1/2K)3g/0U, where

(1/2K)8pf0U =1 + 2ea®(U, V)

+3 L, O U, V), G

and L, in parametric form is

i)f'i _ 2 — de sech?s (38)
9% gech2s — tanh2s sech?s

The frequency extents for the induced superconfinu.
um are plotted from eq. (37) in fig, 2 as a function of
eV.

1t is worth noting that forelV €1,

BI2K = 2(a/K)~ sech?U (eV), (39)

which is the result of traditional SPM [1]. For larger
eV the induced frequency extents grow faster than
the primary pulse frequency extents.

In this letter, we derived the quasilinear partial dif-
ferential equations that describe the propagation of a

a(Uv)

Fig. 1. Induce shape of a second harmonic pulse due to the
presence of an intense primary mode pulse (eV = ny [Fgl?z/
CTL).
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Fig. 2. Induced Stokes and anti-Stokes spectral extents for a
second harmonic pulse due io the presence of an intense pri-
mary mode pulse.

pulse in a non-linear cubic medium, and the effects of
a strong primary signal on a weak second harmonics
signal propagating in the same medium. In our calcu-
lations, we made no assumptions on the relative mag-
nitude of the derivative of the amplitude versus the
phase derivative as found in Yang and Shen [8], and
the derivatives from all terms in (1) are consistently
retained at each order of the expansion contrary to
the SPM traditional calculation [1] and the slowly
varying amplitude (SVA) [2] approximation where
the contributions from the cubic term are not consis-
tently treated. (See table 1 for the equations,) The
physical results that emanate from these calculations
are that (f) the pulse shape is distorted producing an
asymmetry skewed towards the trafling edge; (ii) the
pulse distortion and the spectral asymmetry can be
inter-related, and there is no need to invoke contribu-
tions from plasmas andfor the time response of the
nonlineur index of refraction to explain the Stokes/
anti-Stokes asymmetry; (iif) the primary strong pulse
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Table 1

Quasl-linear partial differential equations for the amplitude and phase of a pulse propagating in a cubic nonlinear medium,

Amplitude equation Phase equation
Traditional SPM theory pafoV =0 dafalV = %eKaﬂ
Slowly varying amplitude pafaV — 3ea?dafali=10 dafoV — ecatdafolU = %g—:Ka2
Yang and Shen dafaV — %ea2 pafolU =0 dafa ¥ — ea? dafal = %eKa2
‘This paper afoV —2ea®afali = 0 30foV ~Fea?dafol = JeKa® ,-égmﬂ

induces an index of refraction in the medium that
modulates the second harmonics weak pulse. Specifi-
cally, the mixed signal input of eq. (26) produced by
combining the primary signal with the output froma
second harmonic generator [7] coupling in the non-
linear medium produces an output signal egs. (32)
and (37) for the second harmonics portion distorted
and modulated by the distortion of the primary pulse
confirming the picture of the induced index of refrac-
tion created by the primary pulse. The results obtained
are large and should be experimentally observable,

We thank Jacques Beneviste for discussions and we
acknowledge the partial support of the National Sci-
ence Foundation (NSE-84 13144) for this research.

Note added. Recent experiments conducted by our
‘group [9] gave data in agreement with eq. (25) in par-
ticular, the observed asymmetry in the supercontinu-
um of the single mode fits the theoretically predicted
values, On-going experiments, using an intense prima-

ry beam with a weak second harmonic beam greatly
enhanced the supercontinuum of the secondary beam
giving intensities ten times larger than those observed
for the single mode secondary beam,
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