Optical binary coded temary arithmetic and logic

George Eichmann, Y. LI, and R. R. Alfano

Two ternary, an ordinary ternary {OT) and a binary balance ternary (BT}, number representations to be used
for optical computing are dircussed. An unsigned OT number is represented by a string of symbeols (0, 1, 2),
while for the BT, the three logic symbols take on the set {~1,0, +1). The BT symbols can represent a signed
number. Using a particular binary encoding method, the three ternary symbols are converted to a pair of
binary symbols. The binary coded ternary (BCT) representation has two advantages. First, it allows use of
the well-developed binary optical components. Second, compared with other optical multiple-valued num-
ber encoding schemes, it reduces the number of input—output channels and thus is able to conserve the optical
space-bandwidth product. As an example for arithmetic operations, BCT full addition algorithms are given.
As examples for multiple-valued logic computing, BCT Post, Webb, and residue logic elements are discussed.
Using the two-port Sagnac interferometric switches, optical implementations of various BCT arithmetic and

logie aperations are described.

1. Introduction

Recently, there has been a reviva!l of interest in
nonbinary, the so-called multiple-valued logic com-
puting. The interest is due to the fact that the in-
crease of logic density can provide additional pro-
cessed information through each connection,'? It has
been indicated that an efficient way to implement
multiple-valued logic is to use a mosaic of ultrafast
large aperture optical elements.” Since for some opti-
cal materials the switching time is of the order of
picoseconds and most optical beams can intersect
without interaction, very high-bandwidth paraliel op-
tical signal channels can be established. For these
reasons, a combination of multiple-valued computing
and ultrafast optical switching may lead to the realiza-
tion of a future generation of the ultrafast digital opti-
cal computer.

For binary optical computing, several number repre-
sentations have been introduced. These methods in-
clude the digital multiplication by analog convolution
(DMAC) algorithm* and the modified signed digit
{MSD)* number representations. The DMAC meth-
od uses a mixed binary format to represent binary
numbers and is suitable for optical multiplications.®”
The MSD is a redundant nimber system of radix
two.*¢ Using the MSD numbers, binary optical arith-
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metic operations have been performed. For nonbin-
ary arithmetic optical computing, a residue number
representation!®!! has been suggested, Using residue
number representation, based on a set of different
modulo suboperations, carry-free arithmetic opera-
tions are performed. In this paper, a number of terna-
ry representation methods are introduced. Ternary
number system is optimum in terms of storage com-
plexity.? Two ternary number representations, to be
used for optical computing, the ordinary ternary (OT)
and the binary balanced ternary (BT) representations,
respectively, are discussed.’? Since in practice an effi-
cient and ultrafast tristable switch is difficult to real-
ize, a practical method to synthesize the three logic
states is to use binary encoding techniques, Here each
ternary symbol is encoded into a pair of binary sym-
bols. The arithmetic or logic operations thus per-
formed are based on binary elements. In this paper,
using binary coded OT (BCOT), and binary coded BT
(BCBT) representations, various arithmetic and mul-
tiple-valued logic operations are discussed. A number
of BCT arithmetic and logic implementation exam-
ples, based on the two-port Sagnac interferometric
switches, are presented.

The paper is organized as follows, In Sec. II a short
discussion of the OT and BT number representations
and the corresponding BCT codes is presented. In Sec.
111, BCT arithmetic operations are discussed. Addi-
tion algorithms for both BCT representations are giv-
en. In Sec.lV, using BCT, various Post, Webb, and
residue muitiple-valued elementary logic operations
are discussed. In Sec. V, optical two-port Sagnac in-
terferometric switch (TPSIS) binary logic gates and
their interconnections are briefly discussed. In Sec.
VI, based on the use of various TPSIS canonical logic
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gates, a number of optical implementation examples of
BCT arithmetic and multipie-valued logic operationa
are presented.

K. Temary Numbers and Thelr Representations

Inaradix N (N > 2) number system, N usually takes
on the set of positive integer (0, 1,..., N = 1) values.

When N is odd, a symmetrical set of numbers [-(N — -

1/2,...,-1,0,1,...,(N=1)/2] can also be used.2 A
radix three is called the ternary number system. In
the ternary system, the positive integer set (0, 1, 2) is
called the OT, while the symmetrical number set (—1,
0, +1) is called the BT get. Using either sst, an un-
gigned ternary number A can be represented by an
ordered string of symbols:

A=(al,_ g g Gl )

"
= z a; X 3, ()
1==-m
where g; is either a OT or BT symbol. Since BT is a
signed digit form,? it is suitable to represent a signed
number. Inthis paper, for both BCT representations,
only integer numbers are considered.

To optically encode & nonbinary number system, an
optical multistable switch can be used. However, in
practice, it is more difficult to implement a fast and
efficient optical multistable switch than its binary
counterpart. For this reason, there is considerable
interest in implementing nonbinary numbers using
binary elements. In one approach, in the so-called
pulse-position coding technique,'? the N signal chan-
nels represent N logic or number levels. The presence
or absence of a binary signal in a specific channel
implies a particular logic or number value. Using a 2-
D binary switch array, pulse-position coding bas been
used to perform residue arithmetic.'® For either OT
or BT number representations, this three-channel
coding method can be used. In this paper, a new
binary coded ternary (BCT) pulse-position coding ap-
proach is introduced. Inthis approach, the three logic
or number values are encoded into a pair of binary
digits. In turn, a ternary number is decomposed into
two binary strings. The advantage of this approach is,
that by combining BCT with pulse-position coding,
each ternary symbol requires only two signal channels,
Also, with this approach, various binary optical arith-
metic and logic devices can directly be used to synthe-
size ternary logic and arithmetic operations. '
; The binary coded OT (BCOT) set is chosen as

Oor = [0.0)3c0m
lor = [L0)ucor = [0, Uscor (2)
201 = {L.lncor

Here the ternary OT digit is the sum of two binary
digits present in the two channels. A clever way to
choose the binary coded BT (BCBT), since it is a
signed number representation, is to assign the positive
(negative) number parts to different signal channels,
i.e.,
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~tap = 0. pent = e
Opr = [00luenr = 11, Upewr (3)
+lnr = H.0ycnr

Using the BCBT form, a negative number can be ob-
tained from its positive expression by interchanging
the channel positions of the two binary symbols. To
represent a negative OT number, similar to the binary
twos complement representation, a threes comple-
ment method can be used,!?

As an example, the decimal number 47 is repre-
sented in OT, BCOT, BT, aend BCBT forms as

‘710 = {1202)01\ - i} 101, Olollgcm, (4a}

479 = UTT1T)gp = (10010, 01101 ey {4b)

M. Arithimetic Computing Using BCT Representations

Before presenting a detailed description of the BCT
arithmetic operations, three auxiliary BCT logic func-
tions are discussed. The logic functions are the mutu-
ally exclusive equivalent pair (MEEP), the minor pair
(MP), and the negation pair (NP) operations. To
insure a unique BCBT output after some arithmetic
operations [see Eq. (3)}, the MEEP function is em-
ployed to convert the resultant {1,1] to its equivalent
[0,0] form while leaving other pairs [1,0] and {0,1]
alone. On the other hand, to insure a unique arithme-
tic result in the BCOT representation, the MP func-
tion is used to convert a [0,1] to a [1,0] pair while
leaving other pairs {0,0}] and [1,1] alone. Both the
MEEP and the MP functions satisfy the addition rela-
tion

[l LERY f2 = x wyn X {5)

where “+’* denotes the arithmetic sum, and x;(f;)} are
the MEEF or MP inputs (outputs), respectively. In
the final auxiliary BCT logic function, the NP takes a

-positive number string pair and converts it to its corre-

sponding negative number string pair. The NP fune-
tion realization is different for the two different, the
BCBT and BCOT, representations. The results for
the Boolean logic design for the BCT MEEP and MP
as well as for the BCBT NP are summarized in Table I

Using these three auxiliary BCT logic operators and
a binary full adder, BCT arithmetic operation can be

Table 1. Yarious Ternary Logic Funclions and thelr BCOT
Repreasentations, x and /, the Function inpul and Quiputl

MEEP  fE XK h=%-x, - BCT
MP f = X+ X% f,= XX, BCT
NP f=x, f,=x%, 8cBT

fi= (0 ) X %,
L= (X, %) 5 BOOT

[A, ! AZ] f|= (x“°+' x,u).'i; -

fp= (KX, + X




performed. Using BCT addition, other arithmetic op-
erations, such as subtraction and muitiplication, can
also be implemented. For example, using the addition
algorithm, with an additional NP operation, the sub-
traction of two BCT numbers can be performed. Us-
ing an NP operator, first, the subtrahend is negated.
A BCT adder is then used to add the negated subtra-
hend to the minuend. Using a number of BCT addi-
tion and shift operations, BCT multiplication of two
numbers can also be performed. For the two BCT
inputs (number strings) represented as

(x)r = lrytalper (dr = [Xaxaeleer {6)

the BCT arithmetic or logic function f{ ) can be ob-
tained as :

f= U;-fz]ncr- (N
where

fi = R(xyp 310 g8 0l fo = hxy X 10X Xk

and g( ) and h( ) are either binary arithmetic or logic
functions. Since the simultaneous use of four input
strings can lead to a complicated operation, the use of
two BCT partial additions is preferred.’? For a BCT
partial addition, the fact that

(e )p "+ (g = [ @ pgdaer “+" [x210lper “ 7 (0 nluer (8)

is used. Thus, for the full addition of two BCT num-
ber strings, two BCT partial addition operations are
performed. Since each BCT partial addition involves
only three number strings, it is simpler to process,

To add two BCOT numbers, first, using the MP
operation, the given string pair x;1,x2; is replaced by
the string pairs yi1,221. ‘Then another MP replace-
mént is performed to convert ¥;2,221 to ¥i12,¥21. This
operation!? replaces all unwanted [0,1] with the de-
sired {1,0] pairs. Next, the first BCOT partial addi-
tion is performed: .

A = A}, Aducor = [induzlecor “+" ranOlucor {9

where A, and A, are mixed (arithmetic and logic) bina-
ry functions. To save space, A; and A; definitions!?
aregivenin Tablel. Tounify the partial result, anoth-
er MP operation is used.

Using the partial result {4;,A2} and the remaining
[0,x2] string, by repeating the previous partial addi-
tion steps, the full BCOT addition is obtained:

Sox Y+ 2y
= [ApAzlucor “+" [0 xlucor

= {AAdncor "+ [22.0)pcoT- {10)
Notice that in the last line in Eq, (10), an interchange
between the strings in the two signal channels is indi-
cated. This operation is guaranteed by the OT
representation.

As a numerical example, consider the BCOT addi-
tion of the two decimal numbers x; = 69,y and x2 =
19;0. In this case, the BCOT numbers are x; =

[1011,1001] and x, = {0101,0100}. The first BCOT
partial addition is

[ApAshncor = [1011,1001pcor "+ 0101,0000}pcor  (112)

This expression, after the two consecutive MP replace-
ments, becomes .

[ApAglucor = 111,100 ye0r 4 [0001,0000] yoor.  (11b)

After some binary arithmetic and logic operations, the
values A; and A, are valued as

Since this is a MP, the result {A;,As] remains the aame
after the next MP operation. Inthesecond partof the
full addition, the partial addition

{11¢)

S= [SI’SKZiinm = [lllO.IBIOIMm Bt [0100,0000]m (lld)
is performed. The MP replacements give

S = 8,8, lucor = [1110,1110]y007 "+ (0000,0000)00r. (1€}

The use of the Table IBCOT A;,A; and MP operations
reduces this to

S = [1110,1110}gcor = (2220)gr = 7810 (110

The BCBT full addition algorithm, for two BCBT
number strings [x;1,%12] and [x2),%22], i8 given as fol-
lows. First, the number strings x;;,%21 are replaced
using a MP logic operator with the strings yu.ya.
Next, the first BCBT partial addition is performed as

A = [ApAglperr = in®relesr “+ " [Y21.0laears a2

where the A;,A; expressions can be found in Table I.
To remove the ambiguity due to possible [1,1] pairs, a
MEEP function is used. Unlike the BCOT full addi-
tion, the BCBT full addition cannot be obtained by
two straightforward BCBT partial additions. This is
s0 because

10,5 5] eer = NP{x . 0luce) # [20lpcur (13)

Thus, to obtain the final sum, an additional NP opera-
tion is required. The BCBT full addition of the two
BCBT numbers

§ = [S,,S)acar = A Adlsenr “+” 0xnlacer
= NP([A'I'AIIBCBT "+" [xﬂlO]BCHT)'

Here, as a BCBT full addition example, the previous
numerical example of the sum of the decimal numbers
5910 “+” 19, is given. The corresponding number
strings now are x; = [10100,01011] and z; =
[01301,00100]. In the first step, the MP replacement
leads to

(14}

[AnAglpenr = [11101,0101 Jpcur
(15a)

After the BCBT A,,A; binary arithmetic and logic
operations, the result becomes

4+ |00000,00000) g o
[AI‘A'ZiII(‘IH’ = “”01.0101]]“(‘“? (15b)
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To unify the result, the use of the MEEP operator
generates

[AI’AQJBCBT - llOlOO,OOOlO]acW (1)

In the second part of the operation, the partial addi-
tion
{B,Blscpr = [00010,10100y0pr

“4" [00100,00000] popr {1&d)

is performed. Repeating the described steps yields
[8,:Balpcpr = [00110,10100) popr (15e)

This expression reduces after a MEEP operation to
[Berﬂch = (00016,10000]gcpr- (156)

Finally, an NP function is used to obtain the final full
addition result:

[S1:S2lacer = NP((B,,B;lpcat)
= [10000,00010)}pcpr ™ (IOOIO)BT =78, (16g)

IV. Binary Coded Temary Loglc Computing

In this section, BCT logic computing is discussed.
For both BCT number representations, the logic de-
sign follows the binary logic design method. First, a
ternary truth table that defines a specific ternary logic
function is established. Next, this truth tableis trans-
formed to its BCT form. Using Boolean algebra ex-
pressions and minimizing them using Karnaugh maps,
the simplified two-output-channel binary logic func-
tions are obtained. For both BCOT and BCBT logic
elements, an identical procedure is used. To explain
the technique, without loss of generality, the BCOT
representation is used. Various canonical BCOT
Post, Webb, as well as ternary residue logic functions
are discussed.

To implement all possible multiple-valued logic
functions, a set of multiple-valued logic primitives is
required. In the Post logic system, this set may in-
clude a minimum (MIN), maximum (MAX), succes-
sion (SUC), negation (NEG), as well as a number of
literal (LIT) multiple-valued logic operators.2 The
SUC, NEG, and LITs are unary operators thatact on a
single input and generate a single output, while the
MIN and MAX act on multiple inputs to yield a single
output. To obtain logic completeness, the unary oper-
ators are used to augment the multiple-input MIN and
MAX operators,

Togenerate a BCOT Post logic representation, as an
example, implementation of 8 Post MIN ternary mul-
tiple-valued logic function is given, In Figs. 1{a) and
(b), based on the OT MIN definition (see Table II) and
the use of the BCOT codes, the OT and BCOT truth
tables are tabulated. To enforce a unique logic out-
put, we let 1ot = [1,0]. The BCOT truth table in-
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x, O | 2 %oo 10 11,

|0 00 0000 00 00

11O | | 1010010 10

2101 2 {000 11
(a) (b)

Fig. I. Truth tables for ternary Post logic MIN function. (&) and
(b) correspond to the OT and the BCOT formats, respectively.

cludes two (f; and f2) binary output channels. After
this step, using Boolean algebra expressions and mini-
mizing them with the aid of a Karnaugh map, the two
binary output logic functions are

fi=xy 2, {16a)

fz'-"llﬁ'xn.. {16l

where the dot stands for binary AND operation. Using
this method, other BCOT Post logic functions are ob-
tained. The resuits are summarized in Table I1.

Similar to the binary case, in a multiple-valued logic
system there also exist a number of universal logic
elements, A universal logic element is that element
with which all possible multiple-valued logic functions
can be generated.'* An exampie of a multiple-valued
universal logic element, the analog of binary NAND
gate, is the Webb operator.2 Using the previously
described method, the BCOT Webb functions can also
be obtained (see Table 11I).

The BCOT logic design method can also be applied
to obtain the ternary-valued residue logic elements.!3
For example, from the ternary residue addition and
muitiplication truth tables (see Table II), a pair of the
BCOT truth tables can be obtained. Again, using the
previously described method, the logic reduced BCOT
output functions are obtained. In TableII, the BCOT
residue addition and multiplication logic functions are
also included.

V. Two-Port Sagnac Interferometric Switches

For the BCT optical computing, various binary opti-
cal logic gates may be used. It has been shown that a
nonlinear Sagnac interferometer (SI) may' be used as
an uitrafast optical switch.!>1 Based on the SI, a new
device called the two-port Sagnac interferometric
switch (TPSIS) can be formed. Two distinct proper-
ties of this switch are its retroreflection-free autostabi-
lization property and its two-port switching capability.
Using TPSISs, various canonical optical logic gates
can be constructed. Here the implementations of an
optical binary NOT, AND, OR, XOR gates are briefly
summarized,

InFig. 2, aschematic diagram of an optical TPSIS is
shown. The two input and output beams are denoted
Iy I, and Oy, Oy, respectively, The beam S is the
optical switching signal. The optical components are

‘a nonpolarizing 50/50 beam splitting ratio beam split-

ter (BS), a polarizing beam splitter (PBS) that trans-




Tabie N.  Auxiary Functions Nesded for BCT Arhwnetlc Operations. [A;,A;] Funciions are in a Mixed Formasl
mmruamsmwmummopmmmuum

» X8 X,
Minimum MIN(x,%g) 2 Xg it X, > Xy 1,2 Xy Xes 29 Xt Yoz
X X H X 2%
Maximum  MAxxe) . It X <X fo X 4% 7 Xea + Xes
Succession  SUC(x)) =g+ 1) mod s L= Xe 4= X%
Negation  NEG(x;) = {2 -x;) mod3 §:= Xie fie® X
: b 0000 X, Ox) =% = e
Literats oyxb 2 OSXS 15 XE X i
o_ otherwise Ogtz00t | e he %%z
{a,b) 60,1,2 Mxbatxiz % txPEixis= X
012 ' R
Summation  SUM{x,xg X, }0_:_2' X fi= X @Xg + XXz + Xy KiXaz
20 —_— —_ —_
{mod 3) 2o 5 X Xer + Ko Xer + X ¥arXer Yar
’ NQo12z X .
Product  PROU.X) % 0[000 fr= XX
(mod 3) 2le é H B Xy ¥arXen + Xe Xae Xa
O 2 X —_—
é 8 Sg fa® e X+ Xep  %p2
A
A 8
l2 l 02 \:. \-.:,\:
—— NLM NLM
ﬂ—-—-——— bt nd -
|, PBS 4 H H
25 S R.(B) PES | BS R ,PBS | BS
O l NLM I ] 1
0,=A.(A-B8) §,=A,(AB) 0,: AeB  O,°AeB
. @ o
v Fig. 3. Schematic diagrams of binary TPSIS gates. (a) NOT and
H AND functions and (b} XOR and its complement functions, —, and

Fig. 2. Optica! TPSIS schematic diagram, I) (I7} and Oy (), the

first (the second) input and output signal channels; S, inducing

Ireum; BS, nonpolarizing 50/50 splitting ratio beam splitter; PBS,

polarizing beam splitter; NLM, nonlinear material; #; polarizing
halfwave plate.

~ mits a linear and reflects its orthogonally polarized
beam counterpart, and a halfwave plate H whose fast
axis is oriented at an angle 45° with respect to the input
polarization direction resulting in an orthogonal linear
polarization between the input and output beams. To
avoid optical phase conjugation, the nonlinear materi-
al (NLM) is placed asymmetrically in the interferome-
ter.' Similar to an electrooptic waveguide interfero-
metric switch, when the optical signal pulse S is off, the
signal is guided from J, (1) to Oy (02) channels with an
orthogonal polarization forced by the H plate. When
the optical signal S is on and polarized parallel to

& denote NOT, AND, and XOR operations.

either input I; or I, beam polarization, there exists due
to the Kerr effect an intensity induced = phage imbal-
ance for the two counterpropagating beams arriving at
the BS. This intensity-induced » phase imbalance
switches the signal from I;1(I2) to 02(0,). Thus,usinga
T'PSIS with a threshold detecting device, optical chan-
nel switching is performed.

The TPSIS can be viewed as a binary logic INVERT-
ER or a NOT operator. In Fig. 3(a), the two identically
polarized optical inputs A and R, where A is an input
logic and R is an interferometric reference heam, are
shown. The A beam low- and high-energy states are
represented by two positive (bright true) logic values:
zeroand one, respectively. When A isazero, the input
R is retroreflected and separated by the TPSIS to

15 September 1986 /7 Vol. 25, No. 18 / APPLIED OPTICS 3117




channel O, When 4 is a one, its output is switched to
channel O, Therefore, for the binary input A, the
channels O, and 0, display logic variables A and A,
where the bar represents the logic inversion. Similar-
ly, when R is a second binary logic variable B, channels
0, and O, display the logic functions A - B and A » B.
When a BS is used to combine two beams, this combi-
nation yields an optical OR element. When neither of
the two input beams is on, the zero logic output (low-
energy state) occurs.

Next, a TPSIS implementation of an XOR gate is
considered. In Fig. 3(b), two cascaded NLMs are
placed in the TPSIS loop. The NLMs are interrogat-
ed by the two logic inputs A and B. For identical logic
values, the corresponding results for the two input
channels are logic one for O, and logic zero for 0,. For
opposite logic values, the logic values zero (one) for
channels 0,(0,) are obtained. Thus, at the output
channels 05(0)), the logic functions XOR and its com-
plement are generated.

. In principle, the TPSIS gates are cascadable. Here
two TPSIS interconnection requirements are dis-
cussed. First, because of the orthogonal polarization
states between the TPSIS input and output signals,
the interconnection of two TPSISs requires polariza-
tion matching. Using a matching pair of TPSISs,
polarization matching can be performed. Second, for
'TPSIS interconnections, a cascade of power or a fan-
out is required. Ina TPSIS, the output optical power
isderived from the R beam power. Since it is assumed
there is no energy exchange between the two counter-
propagating beams,!” the output energy state does not
depend on the inducing beam power. Thus, for a high
x° nonlinear material, the inducing beam power can he
less than the R beam power. Similar to an optical
transistor,!8 the TPSIS output power is larger than the
inducing beam power and is able to drive several subse-
quent gates. In this paper, to fulfill the power condi-
tion, it is assumed that an efficient ultrafast NLM is
available.

VI. BCT Optical Computing and Multiple-Valued Logic
Using TPSIS

In this section, using the BCT representations and
with TPSIS as the binary optical elements, optical
implementations of various BCT arithmetic and logic
operations are discussed, Other approaches, however,
with different optical switch elements, such as the
bistable devices!? and the liquid-crystal light valve

-spatial light modulators,? are also possible,

First, optical implementations of ternary arithmetic
operations are discussed. For the BCT addition, three
BCT auxiliary logic elements (MEEP, MP, and NP) as
well as a binary full adder are required. To generate
the MEEP function, two parallel binary AND funetions
are used. These two AND functions [see Fig. 3(a)] can
easily be obtained using two TPSISs. In Fig. 4(a), the
TPSIS MEEP implementation is depicted, where the
left (right) TPSIS generates the BCT fi(f2) output.
Similarly, in Fig. 4(b), using a TPSISs as an AND ele-
mentandaBSasanon element, an optical BCT MP js
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Fig.4. (a)’TPSIS MEEP and (b) TPSIS MP function generations,
P, linear polarizer; ¥1,%z and fy.f2 are the two input and output BCT
channels,

implemented. The NP operator is different in the
two, the BCOT and BCBT, representations. Because
there exist a number of ways to represent negative
numbers in BCOT, the discussion of an optica] BCOT
NP is omitted. The BCBT NP, on the other hand, is
uniquely defined. For the BCBT NP generation, the
interchange of the input signal channels will lead tothe
desired output. Thiscan be accomplished with passive
optical elements, such as prisms, mirrors, gratings, and
waveguides,

To perform BCT arithmetic addition, two BCT par-
tial adders are needed. The key element in a BCT
partial adder is a binary full adder. The binary full
adder logic functions are

S;=A4e8ecC, (178)

Conr={A; B)®(B,.C)@(C,+ A), (17b)
where & denotes the binary logic XOR function, A; and
B; are ith bits of two input binary sequences, S; and
Ci+1 are the sum and carry generated from the ith bit
addition outputs. In Fig. 5, based on the described
TPSIS AND and XOR, a schematic diagram of a binary
optical full adder is shown. Due to the parallel pro-
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Fig. 5. TPSIS binary full adder. A; and B, two input signals {ith
bit), C; {Cis1), ith {i + 1th) carry, S, ith output of summation; CL,

clock.
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= AR Ny S N
ME] ] i=
(M P Cuu s omay PR L ¢,
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Fig. 6. {a) BCOT partia! addition signal flow diagram for adding

ith digits of [x;,x2]scoT and [v1,0lacor, all mirror sketches are omit-
ted; (b} BCOT A;A; function generation, a binary full adder, three
AND, and one OR gates are used.

cessing property of the TPSIS, only two interferome-
ters need to be employed, one for generation of the
ANDs and another for generation of the XOR functions.
At the teft TPSIS, the sum output S; [see Eq. (17a}],
using a three-input XOR function, is generated. The
right-side TPSIS performs the three AND functions:
A;+B;, B;-C;,and C;-A;. Toobtainthecarry Ci+1 {see
Eq. (17b}}, the three optical signals are then guided to

_the left TPSIS. Finally, the carry can be used for the
+ next bit addition, and the sum is outputed. Several H

plates are used for polarization matching. Because of

two linear polarizers used for the optical retroreflec-
tion isolation, there is no feedback to the input.

To explain the BCT optical full adder implementa-
tion, first, consider a BCT partial adder design. Since
the optical implementations of the three auxiliary
BCT logic operators as well as a binary full adder have
atready been described, only the block diagram of
these elements is indicated. In Fig. 6(a) the BCOT
partial adder signal flow diagram isshown. Itcontains
three parts with each corresponding to an algorithm
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Fig.8. (n) BCHT partial addition signal flow diagram for adding ith
digit of {x1,x2]ncaT and {y1,0lpceTi (b) BCBT A}, A, function genera-
tion, a binary full adder, two AND, and one OR gates are used.

step. Theinputsignals arrive at the top black box that
performs the two MP logic functions. The outputs are
then injected to the middle box where the partial adder
Ay,Ag functions (see Table I} are performed. In Fig.
6(b), this part of the diagram is drawn separately,
where in addition to a binary full adder, three TPSIS
AND gates are used. To unify the results, the bottom
box of Fig. 6(a) is used to perform the final partial
addition operation. Based on two such BCOT partial
adders, a BCOT full adder can be obtained. InFig.7,
using an array of N + 1 full adders, an N-digit TPSIS
BCOT adder is shown. Similarly,in Fig. 8(a),aBCBT
partial adder is depicted. Again, three different sec-
tions are shown. For clarity, in Fig. 8(b), the middle
part that corresponds to the BCBT partial adders
A1, Az operations (see Table I) is drawn separately.
For the full BCBT addition, two BCBT partial adders
and an additional BCBT NP operator are used, In
Fig. 9, the N-digit BCBT adder connection diagram is
shown. Using these adders, BCT subtractions can
also be performed. However, for the preparation of
inputs for the two number subtraction, an additional
NP logic element is needed. '

Finally, optical implementations of BCT multiple-
valued canonical logic functions are discussed. In Fig.

ARE)
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Fig. 8. N-digit BCBT adder for two N-digit input numbers x =
[rixslacer and y = [y).yslecer.
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. Fig. 10, Ternary Post logic generations using TPSISs; (a) a BCOT
’ MIN gate and (b} a BCOT MAX gate.

10(a), the BCOT MIN function implementation is
shown. Two parallel TPSISs simulate the binary AND
gates, In Fig. 10(b), a schematic diagram of an optical
BCOT MAX function (see Table II for the BCOT
output functions) is depicted. Here two mirrors and
two BSs are used for the two optical binary Okt func-
tions. Similarly, other BCOT logic functions {aee Ta-
ble I1), such as the SUC, NEG, and LIT operators, the
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universal Webb as well as the ternary residue logic
operators can also be optically generated.

Vil. Summary

In this paper, TPSIS-based ternary optical comput.
ing has been discussed. Two, OT and BT, ternary
number representations are used. While the OT is
suitable for unsigned, the BT is suitable for both
signed and unsigned number representations. Torep-
resent a ternary number, binary sncoding techniques
were discussed where each ternary digit is represented
by a binary signal channel pair. Compared with other
multiple-valued optical encoding methods, one advan-
tage of the optical BCT is that it conserves the system's
space-bandwidth product. Another advantage is that
the ternary optical computing elements can be directly
synthesized using binary optical switches. As exam-
ples of BCT arithmetic computing, both BCT-type
addition algorithms were given. Based on the algo-
rithm other BCT arithmetic operations such as sub-
traction and multiplication can also be performed.
Using BCOT numbers, various Post, Webb, and resi-
due multiple-valued logic operations were also dis-
cussed. A number of optical TPSIS binary gates im-
plementation examples were presented.

This work is supported in part by a grant from the
Air Force Office of Scientific Research. The construc-

tive comments of the referees are deeply appreciated.
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Since there is chlorine in the oxidizer, but not in the binder, its presence
m;{ps the oxidizer distribution. The SEM images are analyzed with the
SMFA, first to oblain the projection of the chlarine concentration along the
axis, and then to obtain the spatial-frequency distribution of the fluctuations
in that distribution. Finally, by taking the reciprocals of the frequeacies of
peaks in the spatial frequency distribution, characleristic dimensions related
te the sample are oblained.

From tabulations of the characteristic dimensions for a number of samples,
it appears that the characteristic dimensions correspond approximately Lo the
tange of particle sizes in the samples. The characteriatic dimensions for the
coarse samples ranged from 45 10 398 xmy; those for the fine zamples, from 8 to
381 pm. .

This work was done by Leon D. Strand, Noerman 8. Cohen, and Miguel A
Il'lszrn'?an of Caltech for NASA's Jet Propulsion Laboratory, Refer to NPO-
87. ' ;

Jon-deposited polished coatings

A process tms been devetuped Lo provide a highly polished and adherent
dense coaling Lo a substrate that is free of voids, contaminants, and inclusions.
A broad-beam ion scuurce is used to sputter-polish while a vaper or spulter
depusition is accurring simultaneously on the substrate sueface. Prior tech-
nipies removed materinl from the surface, exposing subsurface voids and
contaminants. Mo simultaneaus G110 of voids ocourred and therefore the
sutluce was not free of defects since Lhese were removal processes,

The new process consists of using a broad-heam jon sotirce in an evacuated
chamber to jun-clean a rotating surlace that allowa the grazing incidence of the
jun bean. This sputter cleans off shaorbed gases, orgnnic contaminants, and
sxides uf the mirrar surface. In addition to the cleaning, surface prolrusions
will be sputter-etched away.
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Fig. 14. Grazing-incidence ion polishing is conducted aimulta-
neously with deposition by normally incident vapor or a sputtering
heam,.
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Fig. 15, lon aputter polishing and deposition give a smooth depoe-
ited and polished surface, in a manner analogous to that of the
repeated painting and sanding of woed.

Once the surface has been ion-cleaned, a variety of vacuum-deposition
technigues can be used to deposit sdherent coatings on the cleaned mirror
surface. Figure 14 depicts grazing-incidence ion polishing with simultaneous,
normally incident vapor or sputter deposition. The simuitaneous sputier
polishing and vacuum deposilion must be done in a manner so that the
sputier-etch rate is slightly lower than the deposition rate on the mirrot
surface. This allows pits or depressions in the mirror surface to fill in quickly
hecause Lhe grazing-invident ion beam does not have a view factor Lo sputter-
elch Lhese arcas which are receiving near-normal ineident vapor or sputler
deposition. At the same time, protrusions, bumpa, and other convex surface
aaperities have a spulter-etch rate higher than surrounding smooth fiat sur-
faces. Thisis due Lo the relative angles at which the sputter-etching ions and
the depewsilion malerial arrive.

Figure 15 depicts the proceasea of simultaneous ion sputter, polishing, and
depositinn.  The process {feada to a smooth deposited and polished surfaceina
aimilor manner ananbogovs to Lhe mncrnampic proceas of multiple painting and
sanding operations for wood finishing. The net depaosition resulting quickly
becnmes a amoath mirror-surface deposit that slowly builds up free from
surface irregularities, such as defects, vaids, or protrusions. The process is
stopped when Lhe deaired deposil thickness is achieved. Both the ion-beam-
soutter palishing amd the depusition should be slopped simultaneously when
the desired conting Lhivknesy is achieved.,

Fleven ather adaplations to Lhe proceas are the following:

{}] The mirror material can be metals, metal carbides, metal oxides, certain.
polvmers, and most inorganic compounds.

{2} 'I’he deposition can be produced by vapor deposition from electron-beam
evaporators, heated buats, filaments, ot by ion-beam, de or rf sputteting from
the aame or another depesition system.

(4} 'T'he submtrate susface angle f can be varied from 0° to & 10° with respect
to the incident ivos, depending on the degree of polishing desired.

(4) The surface can be cooled or heated as desired to improve the quality of
the coating.

(5) The ton energy can he varied fram a few hundred to a few thousand
electronvolts.

{6) Theaputlering ions can be a variety of gasspecies, such as Ar, Xe, Ne, and

{7} The duration of initial sputter-etch cleaning can be varied from seconds
to hours, depending on the thickness desired.

(8) The iun henm can be of various diameters, from centimeters to meters,
depending upon the subsirate diameter.

{2 ‘The depsited coating can be a variely of materials, such as metals, metal
oxides, and metal nitrider. The deposited maletials can also be a different
material than Lhe substrale.

(10} "P'he rolation rate of the subalrate can be varied as desired to produce Lhe
heat-guality sutface conting.

(i1} Further coalings can be a&piied hy the same process if one wants to
switeh materials fur the outer mibstrate surface.

The process is particularly ndaptable (o the polishing of varivus substraies for
aptical ar esthetic purposea.

Thir work was done by Bruce A, Bunks of Lewin Hesearch Center. Hefer to
LEW-11545. Further information may he found in NASA TM-81679 {N81.
19278/NSP “Simultaneous fan Sputter P'olishing and Deposition.” available
from NI'T'S for $7.400 prepai.

contruad on page 131
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