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Second harmonic generation in optical fibers is investigated. A scheme lo combine material. modal and geometrical
dispersion to achieve phase matching is proposed. Conversion efficiency, as a function of the [iber's parameters and the

incoming electric field strength, is computed.

Low-loss fibers are an excellent transmission me-
dium for optical communications networks {1]. Opti-
cal fibers are also excellent nonlinear materials, pulse
compression {2] to 8 fs using self-phase modulation
being so far the most noted achievement. The low ef-
ficiency of the coupling between lasers and optical
fibers and the need for signal amplification in long-
haul communication systems prompted studies of ac-
tive fibers as quantum amplifiers {3]. Fibers are also
candidates for some optical computation schemes,
Fibers photonic integrated systems are becoming serfous
contenders in many applications. In this letter, we
add one more possible application, We investigate sec-
ond harmonic generation [4] in fibers due to quadru-
polar terms [5].

The fiber’s ability to trap electric field energy den-
sities over long distances permits large conversion into
second harmonics for a relatively low value of the
nonlinearity . The phase matching between the propaga-
tion constants at ¢ and 2co (@« ~ 2k{)) can be
adjusted if necessary through modal dispersion. The
geometrical anisotropy in elliptical fibers {6] produces
birefringence, which adds to the material and modal
dispersion. This birefringence can potentially be used
to improve phase matching and consequently optimize
second harmonic conversion efficiency .

The wave equation for a linear step index wave-
guide is given by '

(V2 — 82, + (n¥/cD)w?] ¢, () =0, ey
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where the electric field is given by
E(r,z,0)=§ = ¢(r) e~ gitt | 2) |
The fundamentat solution of eq. (1) is given by {7]
O () =To(UmrIR), | (3a)
where
62, =n2e? e — (1, RY? . (3b)
The I,,, is the mth root of the equation

J1(x) 1-24
xIglx)  (24n2w2R2[c2 — x2)112

% K ((28n2@2R2[c2 - x2)112)
Ko((28n2w2R2[c2 — x)L/Ly

where R is the core radius and the square of the index

of refraction of the cladding is n2(1.—2A). Considering

that the lowest root /; corresponds to the most dom-
inant mode, we obtain

0, (4)

o1 (r) =741 7/R), (52)
and .
B2 = n2aw?fc? — (i) [RY?. (5b)

The subscript 1 will henceforth be omitted. Both
and 7 are functions of w explicitly and implicitly
through the dependence of n on w. .

- In the two modes problem {w and 2w}, to first or-
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der we shall treat the » dependence in a linear fashion
and use separation of variables for the transverse and
longitudinal components. The ith component of the
nonlinear polarization, in the dipolar approximation,
at w) = wjy — w, is given by

PR = d EfY B explifoy —wy)1l (6)
where £ is the J-component of the spatial part of
the electric field with frequency w; and dj is the
nonlinear coefficient. However, in isotropic media,
the average value of dyg, which is obtained from the
dipolar term in the multipole field expansion, is zero.
Therefore, the leading contribution to Pyy will come
from the quadrupole term of the charge distribution
{permanent and/or induced) multipole field expansion,
i.e., the term with the quadrupole moment multiplied
by the gradient of the electric field. Specifically,

P = agu B (9 EP)" explifw; —wp)t] . (1)

If the magnitude of the gradient of the electric field
is approximated by 2#£/), i.e., the derivative of the
envelope is neglected, the effective coupling constant
is g X 2n/A. If ¢ and p are the magnitudes, respectively,
of the quadrupole and the dipole moments, the effec-

tive-coupling constant can be approximated by (2n/0) |

{q/p)d,i.e., the magnitude of the effective coupling is
down by a factor 2ma/A from d, where a is the linear
dimension of the microsystem {(atoms, molecules, etc.).
This factor is approximately 10~3 for optical frequen-
cies.

Approximating the gradient by the z-derivative
and denoting (guy wl.z) by g;, then the coupled equa-
tions for the electric fields of the primary and second
harmonic are given by

[V2 + (82/2z2) + (0 wic)] ¢ (P uy (2)

=q) 9 ¢ uy(z) duy (2)/3z (8)
[v3 + (32/322) + (12920/c)?] 42N uy(z)

=4 ¢)(r) 92 (ryuy (2) duy (2)f3z, ©)

where V%. is the transverse portion of the laplacian,
Using (1) in (8) and (9), we obtain

[(@%/322) + (B«N)?] ¢y uy (2)
=q] ¢4M) $Q(r) uy(z) duy @)z, (10)
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[(92/322) + (B2WN)2] ¢Qw)(r) uy(z)
= g5 ¢(r) 62N uy (2) duy (2)/0z (i1
where
Bl = (W eyje)? — ({2 R)? (12)

Eqgs. (10), (11} are averaged over the cross section [8],
respectively, with the weight functions ¢{“)() and
¢2<)(r). Defining v, and v, as

1
7 =( [ THx) s (1@x)x dx)
0
X(fng(l(z“’)x)x dx)_1 , (13)
0
1
72 =( [ T2Ix) T (1@ dx)
0

1 -
x( Of T2(CwWx)x dx) 1 (14)

egs. (10}, (11) reduce then to

[8%/92% + ()Y uy(2) = ¢ uypz) duy Moz, (15)

[02/822 + (B2N2] uy(z) = cqu;(z) duq ()32, (16)

where ¢; = q;y; represents the average coupling coeffi-
cients over the field distribution along the radius.

To solve eqs. {15), (16), we will use the method
of multiple scales [9] which is specially suited for
nonlinear differential equations of the above gyroscopic
type. Let the solutions be written as

uy =euy (Zg,Zy) + e2u12(zo,zl)+‘ . 17

Uy = ey (Zg, Zy) + usn(Z, Z1) t o (18)

where Zy =z, Z; = ez etc. To order ¢, the differential
equations are

Dg”u +(5(w))2u11 =0, (19a)
D(% H21 + (ﬁ(zw))z U =0 . . (lgb)
where Dy = 8/38Z. The solutions of (19) are given by
uu = AI(ZI) exp(lﬁ("’)zo) +c.c., (203)

Uy =A4(Z,) expif@IZy) + c.c. (20b)
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The differential equations, obtained from order €2,
are

Diuyy + 2DoDyuyy + (B2 ugy = 01(130“12)”%51, )
a

Dluyy +2DgDy gy +(BFV2uy; =cquyy (Doul%z)l-b)

The secular conditions from these equations reduce
to

2BWAY + BWde 4,47 exp(ioZ,) =0, (22)
~ 262945 + flep AT expl—i0Zy) =0, (23)

where prime is differentiation with respect to Z; and
the detuning factor o is given by

f2w) = 2pW) + eo, (24)
Denoting the amplitude and phase of A; by g; and §;,
A;= 3 a; exp(if;} + c.c., {25)
eqs. (22),(23) reduce to

a = —%ecqaqa5 cos Y, (26)
dy = (e, [d4p2)) a2 cos y, (2N
8y =—7cqaysiny, (28)
8 = - (B, [482Way) a? siny, (29)
where

'}’=62 —261 +aZl. (30)
The integrals of motion for the above set of equations -
are’

ad vl =Ly, (1)
where

y = oy f26) e ) (32)
and

aza% sin ¥ — (2vafcy) a% =L,. (33)

For the initial conditions 22(0) = & and a,(0) =0,
Ly =& and L, = 0. Parametrizing ay as

2=, N )
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the equation of motion for { is then given by

(@ - % [ s} o] o

its solution is

Kz =F(x,m), (36)
where

{3 —§=(f3 —§R)siny, (37)
n= (85 — /05 —§1 2, (38
K=gci[8(G;5 -], (39)

F is the elliptic integral of the first kind, and §; <{,
< {3 =1 are the roots of the cubic equation inside
the brackets on the right hand side of eq. (35).

The minimum of { is {;. {; is zero when o, the detun-
ing, is zero, i.e., the energy can be completely trans-
ferred to the second harmonic mode if we have per.
fect phase matching (8@«) = 26()), In case that
pAw) £ 28() for the lowest mode, the detuning o can
be zero for a value of (2« which is not the lowest
root of eq. (4). The distance at which { reaches its
first minimum is given by

z=(1/KYK(§3 — 53 — 1), (40a)
where
72
Kim) = f (1 —m sin26)~172 dg (40b)
0

i.e., the complete elliptic integral of the first kind.
This distance is inversely proportional to the nontin-
ear coupling constant and the amplitude of the in-
coming electric field, .

Next, we propose a scheme to fine tune the phase
matching if the material and modal dispersions do
not balance for particular modes. Elliptical deforma-
tion of the fiber core causes birefringence [10]. These
deformed fibers have been used extensively in polari-
zation state applications. Slight elliptical deformation
in the core cross-section can be computed through
perturbation theory. In this case, the perturbation is
applied to the boundary conditions. By means of a
coordinate transformation, the new boundary condi-
tions ¢an be transformed back to their unperturbed
form, however, this transformation would correspond-
ingly change the functional expression for the differ-
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ential operators. These changes in the transverse la-
placian are then considered as the perturbation opera-
tor. The correction to the propagation constant is
then obtained by standaid perturbation techniques
for computing corrections to an eigenvalue, Specifi-
cally, if the equation for the circular cross section is

xt+y2 _RI=0, (41)
and the equation for the ellipse is

x2/RY+y2/R2 —1=0, (42)
then the new variables transformation is given by
x=Ryx'[R, y=Ryy'[R. 43)

The transverse laplacian operator in the new coordi-
nates is then given by

v =(RYR?) 8%/ax'2 + RYRD) 2/ap'2,  (44)
and the perturbation operator takes the form:
H' =(RR} —1)92/3x" +(R2[R3 — 1) 82/3y'2 ,(45)

which will be small provided that R, and R are close
to R. In an eiliptical deformation that conserves the
cross-sectional area, and for small ellipticity:

Ry =R(l +3e),
where e is the ellipticity. The perturbation operator

is then given by

H =e(~32[ox2 + 32[ay'?), (47

and the first order correction to ,!32 , where 32 is de-
fined in eq. (1), is given by

5ﬁ2 =f¢(x :}')‘l{I ¢;(x ’.}:)d'x dy , (48)
Jo2x',p") ax’ dy

The geometrical birefringence defined by

B=3(8 - BN (49)

was computed by many authors [10] to be given for
a step index fiber by

B=enAGQH), (50)

where 8, and g, are the propagation constants for x
and y polarization, A is the wavelength of light in vac-
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uum, v is the normalized frequency defined as
v=02r/A\)n R4 (51}

and G(v) is a function of v [11]. In the range of inter-
est,v ~ 1, G(¥) is in the range 0.3 to 0.6. The compu-
tation of geometrical birefringence for large eccentric-
ities has also been reported in ref. [11].

In the above calculations we outlined two tech-
niques for phase matching, modal dispersion and geo-
metrical birefringence. Other techniques for reducing
the detuning include inducing birefringence by mech-
anical means such as stress and twist [12]. The finesse
of the required tuning is proportional to the magnitude
of the incoming electric field, For 2 10 mW cw beam,
tuning should be to within 1 part per ten billion for
efficient conversion. The corresponding distance for
this optimal conversion is 103 m. Manufacturing-wise
this implies producing a 1 km fiber with an ellipticity
controlled to one part per million. However, the typi-
cal source width (1 A) relaxes this condition to a re-
quired tolerance of one part per hundred.
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