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Digital optical isochronous array processing

George Eichmann, Yao Li, Ping Pei Ho, and R. R. Alfano

An optical isochronous array processing method is proposed. An optical isochronous array processor (OIAP)
is a local regularly interconnected processing network that employs an array of identical optical processing
elements, Inan OIAP, incoming isochronous data are parallel processed in a fashion much like a propagating
electromagnetic wavefront, For the various applications, the OIAP processing elements and their intercon-
nections can be different. In this paper, various all-optical OTAP elements are considered. Applications
ranging from optical binary number multiplication preprocessing to optical matrix algebra as well as to optical

residue arithmetic are presented.

I. Introduction

The three major advantages® of optics for the mod-
ern day signal processing and computation applica-
tions are (1) its ability to process large bandwidth
signals at ultrahigh speed; (2) its unguided (free-space)
wave propagation property; and (3) its lack of interac-
tion between intersecting beams propagating in a lin-
ear medium. A combination of these three salient
properties can lead to ultrafast parallel optical signal
processing and computing. : Using linear optics, a good
optical analog parallel processing example is an optical
spatial Fourier transform. Other optical analog signal
procesging methods, such as convolution and correla-
tion, are also available. For numerical computation,
however, optical analog processing methods cannot
offer in general high numerical precision.? To im-
prove the precision, digital calculations need to be
used. Thus a parallel ultrafast digital optical comput-
er has long elicited the research interest of optical
scientists and engineers..

Among the three parallel computer structures, i.e.,
vector processor, multiprocessor system, and array
processor (AP), the first two are general purpose, while
the last belongs to the special purpose computer cate-
gory. With an AP, data are parallel processed either
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synchronously with a global system clock or asynchro-
nously in a data-driven fashion.? Because these APs
offer solutions to a large variety of signal processing
problems, there is a considerable interest in the study
of their architectures and programming languages.
To implement optically an AP, some of its unique
features, such as the parallel input-output channels
and the spatially local gate interconnections, need to
be considered.

In this paper, methods to implement various optical
AP (OAP) architectures are proposed. Since these
OAPs can process incoming data in an isochronous
fashion, that is, whenever the inputs arrive at the same
time outputs are generated, the term, optical isochro-
nous array processor (OIAP), isused. Since the IAP is
also a locally regularly interconnected network, it is a
subset, of the systolic AP (SAP). The difference be-
tween the two is that in a SAP, the elemental processor
is an arithmetic processor (i.e., adder and multiplier),
while in an IAP, lower level processors such as a logic
gate can be used. With the current optical technology,
an OIAP is easier to implement. In the following, for
the various OIAP operations, as fundamental process-
ing units regularly interconnected ultrafast nonlinear
optical logic elements are proposed. Since some of the
processing units can have a femtosecond response, it is
possible that these pipelined OIAPs will process data
in the picoseconds. The paper is organized as follows:
in Sec. IT a number of all-optical elemental processing
units are briefly discussed. In Sec. ITI, the use of AND
element-based OIAP for optical binary multiplication
is described. In Sec. IV, various OIAP-based binary

element matrix algebra processors are presented. In' '

Sec. V, fundamental residue mapping units are de-
scribed, while in Sec. VI, based on these mapping units,
an OIAP matrix-matrix residue multiplier:is pro-
posed. Finally, Sec. VII summarizes the results of this
paper. _ R




ll. Ultrafast OIAP All-Optical Elemental Processing Unils

An isochronous wavefront AP is an array of locally
interconnected identical processing units. ¥or differ-
ent data processing applications, the procesging unit
can be different. In this section, some possible ele-
mental OIAP processing units are described. For the
use of an QIAP for arithmetic processing, such as a
binary scalar, vector as well as matrix multiplications,
an algorithm, the so-called digital multiplication via
analog convolution? (DMAC) scheme may be utilized.
In this approach, analog optics is commonly used to
obtain as the first step a mixed-binary output format
convolution result. In principle, for the multiplica-
tion of two large numbers, compared to traditional
shift/add muliipliers, the DMAC processor is faster.
However, its actual performance is limited by electron-
ic A-D postprocessing.* With a current version of
DMAC binary convolver, the two fundamental pro-
cessing units are an AND gate and a summer. The
summation operation can easily be implemented via a
lens. To perform the AND operation, most approaches
adopt a hybrid, either an acoustooptic (AQO) or an
electrooptic (EQ), methodology. To increase the pro-
cessing speed, an all-optical convolution method must
be used. In this section, for the OIAP convolution
preprocessing step, several ultrafast all-optical ele-
mental processing approaches are proposed.

Currently, there are a number of techniques avail-
able to perform an all-optical AND logic operation.
However, among these only those AND elements that
have a spatially symmetrical input and output channel
format are suitable for an AP. This format will not
introduce additional time delay, a delay that tends to
slow down the computational speed. As possible sym-
metricinput and output channel optical AND elements,
four different ultrafast gates are next briefly consid-
ered. A simple AND device is a three-input-heam opti-
cal nonlinear etalon®8 [see Fig. 1(a)]. The two sym-
metrical beams A and B are the logic inputs, while the
third (middle) input beam R serves as a bias or optical
reference. Initially, using the R beam, the etalon is
tuned to a low power transmission state. Next, the A
and B beam intensities are adjusted so that when all
the three beams are on, the total optical power reaches
a switching threshold. Above the threshold, the eta-
lon is in a high transmigsion state switching the signal
R from the input tothe output. The angle #is adjusted
so that no bistable switching phenomena occur to A
and B. This is an important condition since the two
off-axis outputs must serve as the inputs to all subse-
quent OIAP stages. Using a similar geometry, a three
(two for logic and one for optical bias) input optical
Kerr gate’ [see Fig. 1{b)] can also act as a symmetric
channel optical logic AND element. There are two
differences between the Kerr and etalon AND gate.
With Kerr AND gate, the logic input and output have
different polarization states, and because this device is
not bistable, a clear switching threshold does not exist.

A third candidate is an optical phase-conjugate AND
gate® [see Fig. 1(c)]. The beams A and B act as the two
logic inputs, while the beam R is a bias (reference)
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Fig. 1. Four all-optical AND candidates as elemental processing
elements for OIAP. A, B, and R, twologic and a bias input beams; P,
linear polarizer.

source. Due to the nonlinear phase conjugation via
degenerate four wave-mixing effect with respect to the
reference beam the logic AND output beam travels in a
counterpropagating direction. There are other possi-
ble all-optical six-port logic AND gate structures, ie.,
structures with two logic and one power supply inputs.
However, from an OAP implementation point of view,
these elements are not ideal, because with an array a
large number of optical bias (reference) channels must
he established. For this reason, it is better to use a
gate that uses only two symmetric inputs without the
need of a bias beam. An optical second harmonic
generation (SHG) or parametric wave generation via
nonlinear optical three-wave mixing®? AND device
does not require a bias beam. A SHG gate has also the
potential for a femtosecond response. In Fig. 1(d), a
SHG-based AND gate is shown. Two symmetrical

identical frequency and polarization logic input °

beams, denoted A and B with an angular separation @,
are directed into the SHG crystal. When the angle is
adjusted so that the so-called 90° phase-matching con-
dition? is satisfied, in the bisecting input angular direc-
tion, a second harmonic (SH) output signal is generat-
ed. One advantage of this structure is that, since only
a small part of the input energy is converted to a SH
output, most of the fundamental input power passes
through the gate allowing the outputs to be used as
inputs to feed subsequent AND gates. A second advan-
tage is that a number of such AND gates can optically be
interconnected on a single SHG crystal. Thus, except
for the change in the output frequency, a SHG-based
AND gate is a good candidate for an elemental device.
Next, an AND gate-based OIAP operation is dis-
cussed. In Fig. 2, a schematic OIAP network where
the intersections indicate the AND element placements
is shown. The outputs from these elements are
marked by dashed lines. To guarantee the isochro-
nous arrival of the two optical sighals at each intersec-
tion, using either a holographic grating or a composite
prism,! both input wavefronts are tilted at an angle ¢
(see Fig. 2). The output of each logic AND gate is
directed to subsequent logic or memory device for
further processing. Using an array of such all-optical
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Fig. 2. Schematic of a rectangular OIAP. a; and b; are parallel

isochroncus incoming data, # is an oblique wavefront angle for syn-

chronizing the input data. Anintersection indicates the presence of

an identical elemental processing unit generating a dashed line
output.

AND gates, an OIAP network can be constructed. For
multistage operation, since it is necessary to convert

‘the SH signal back to its fundamental frequency, para-

metric frequency down (PFD) conversion is needed
(see Fig. 3). Using a parametric wave-mixing process
with a strong fundamental frequency third harmonic
(TH) beam, the SH signal can be converted to the
fundamental and amplified. With a KDP crystal, the
process has been experimentally demonstrated.’? In
the next sections, the utilization of an AND gate-based
OIAP to the implementation of various optical digital
arithmetic operations is discussed.

. Digital Multiplication Using an OIAP

In this section, the computation of both fixed and
floating point binary number scalar multiplications,
using various OIAP preprocessing networks, is de-
scribed. In either case, the OTIAP is to be used as a
convolution preprocessor. Since the convolution re-
sults are represented in the mixed-binary format, to
complete the operation it must be followed by either an
electronic or optical A-D converter!®!4 and a shift/add
(S/A) array. In terms of numerical complexity, the
implementation of a highly accurate electronic A-D
converter is as difficult as the multiplier itself.4 Thus
a useful DMAC processor must employ both a highly
accurate ultrafast optical convolver and a A-D post-
processor. In the following, the ultrafast optical im-
plementation of the first part of a DMAC processor is
proposed. For our discussion, irrespective of the prac-
tical input crossing angle inside the crystal, the sche-
matics are drawn with all the input channel beams to
intersect perpendicularly.

The magnitude of the product of two N-bit binary
numbers, '

N1 N1
A= z a2 B= Z b2/,
i=o

=
can be expressed in two steps ast
2(N-1)
{Pl=1AB|= z C2, (1a)
i=0
where
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Fig. 3. Staged SHG-hased OIAP network with nonlinear paramet-
rie frequency-down (PFD) conversion devices as interconnection
elements.
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Fig. 4. Two OIAP’s for binary (a) unsigned and (b) two’s comple-

ment signed multiplication preprocessing. Parallel spatially en-

coded inputs enter from the left and the bottom part of the diagram.

Outputs generated at each AND gate beam intersection are used to
form the mixed-binary multiplication result.

i

C;= z aypbiy

k=0

OsksN-1) (1b)

is the ith digit weight of resulting product in a mixed-
binary format.? Equation (1b) can also be interpreted
as a ith digit result from the two number sequence
convolution. To obtain this multiplication, using the
DMAC algorithm the binary convolution indicated in
Eq. (1b) needs to be first performed. This convolution
in a real-time scheme uses sequential electronic signals
to drive two cascaded acoustooptic (AQ) Bragg
cells.'%18  Using integrating lenses, the deflected wa-
vefronts are collected at their corresponding detectors.
Because of the serial input, the convolution of two N-
bit words requires 2N — 1 computation cycles. The
cycle time is mainly determined by the speed of the
acoustic wave. To increase the convolution speed,
next, an OIAP parallel digital convolution scheme is
proposed.,

For implementing a two 4-bit binary number paral-
lel multiplication, consider a 4 X 4 optical AND gate
array [see Fig. 4(a)]. At each beam intersection, an
optical logic AND element is placed. The input bit
spacings D4 and Dy are identical. The seven parallel
channel AND gate outputs, indicated by dashed lines,
represent the seven output digits. For example, to
multiply two unsigned decimal numbers P= A X B =
13 X 10, first, each decimal number is converted into its
corresponding binary format. In this case, they are 4
= 1101 and B = 1010. These bits are then spatially



optically encoded as light pulses to be launched into
the convolution network. The number of cumulative
AND output pulses in seven output channels yields the
mixed-binary number convolution result 1112010.
This mixed-binary number corresponds to the decimal
number 130.

To include sign information, a two’s complement
binary (TCB) representation!™® can be used. In a
TCB representation, an additional 0 (1) sign bit in
front of the most significant bit (MSB) represents plus
(minus) sign information. For a positive number, it
simply places a zero in front of the MSB in its unsigned
binary form. To obtain a negative number, its positive
counterpart is first complemented, and then to it a one
isadded. For example, the signed decimal numbers A
= 11 and B = —14 have as their TCB representations
the numbers A = 01011 and B = 10010. It has been
shown!8 that to multiply two 5-bit TCB numbers, both
nine input and output channels are required. For this
reason, four zeros (one) are inserted between the sign
and MSB of A(B). As an example, to multiply these
TCB numbers, in Fig, 4(b), a SHG-based TCB multi-
plier is shown. The network takes inputs A and B and
generates in parallel the mixed binary output P =
239220110, To convert this number back to its TCB
format, the least significant {L.SB) bit is first divided
by two, and the quotient is added to the next bit and so
on. The result is P = 101100110 representing the
decimal number —154, Since this TCB multiplication
network uses the lower triangular half of the previous
unsigned binary multiplication network, two SHG-
based implementations can be used. Either only part
of the unsigned number multiplication network output
(corresponding to lower triangular array) channels is
used or the upper triangular half crystal is replaced by
an index-matching liquid.

The previously described multiplication methods
use, both for the input and output, a fixed point binary
representation, Recently, based on the DMAC algo-
rithm, an optical floating point binary multiplication
scheme, also known as a flixed point number multipli-
cation,'? has been suggested. Based on the SHG AND
gate array, next, the operation of a flixed point un-
signed binary multiplier is described. Assume, as an
example, the numbers to be multiplied are A = 7/2 and
B = 5/32. The corresponding floating point binary
representations are A = (0.111) 2*?and B = (0.101) 27,
For the use of 3-bit mantissas and the two exponents,
+2and —2, with the flixed point binary representation,
each number is represented by seven binary digits, i.e.,
A = 11.10000 and B = 00.00101. These digits repre-
sent the parallel inputs to the previously described
SHG-based unsigned binary convolver network. At
the convolver output, the train of pulses P =
0000112110000 is generated. After setting the deci-
mal point'® that can be performed electronically the
final result is P = (.011211, representing the correct
fraction 35/64. Since, with the flixed point multiplica-
tion technique, the OIAP is used for handling mantis-
sas, the method can directly be extended to perform a
signed floating-point TCB multiplication.

b,
C=[a, G Qb ™
b; r

o — A\

b b. b,

OIAP 3-D vector inner produet processor, Three AND gate
outputs are aligned in a single cutput channel.

SHG
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Fig. 5.

IV. Algebraic Processing Using SHG-Based OIAP
Neiworks

The normal method to multiply two binary numbers
requires three operations: alogic AND, a shift, and an
arithmetic sum operations. With the DMAC scheme,
the multiple shift and sum operations are bypassed by
using a mixed-binary representation. The mixed-bi-
nary representation allows the successive addition of
several numbers before a final A-D conversion. More
complicated algebraic operations such as matrix alge-
bra can also be decomposed into several multiplica-
tions and additions that can then be performed in
parallel. For performing digital optical matrix alge-
bra, several DMAC-based architectures have been
proposed.!5-20 In this section, using an OIAP, various
optical binary algebraic operations, such as vector—
vector, matrix—vector, as well as matrix-matrix multi-
plications, are described.

Given two N-dimensional (N-D) column vectors

oy by
ag by

A = ) y B= ' H (2)
Ay by

the inner or scalar (dot) product of the two vectors is
defined as

by
by

C=A"B = [g,8;...ap] =a.by +ogby .. ayby.  (3)

bN

Assuming all a;(b;), where i, j € (1,2,...,N) are eithera
zero or one, Bq. (3) can be implemented with N number
of AND gates and a summer. As an example, in Fig. 5
the inner product of two 3-D vectors is considered.
Two 3-bit parallel inputs are directed to a SHG crystal.
The three intersection AND gates are aligned so that
their outputs can be routed into a single channel. Us-
ing a time-integrating output detector, the detected
inner product result is in a mixed binary form. This
result can then be converted using an A-D device to its
binary form.
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The vector outer product of two N-D binary vectors,
A and B, is defined as the matrix

5] €11 ¢z . Civ

g Ca1 Caz ... Con
[Cl=ABT=] * |bb,...00=| = - ) w

Oy vt fnz ot CNN,

where ¢;; = a;b;.  To perform this vector outer product
multiplication, N? AND gates are needed. In Fig. 6, a
schematic network illustrating the multiplication of
two 3 X 3 vectors is shown. To expand the input light
dots into either horizontal or vertical light bars to cross
and overlap at the SHG plate, two additional cylindri-
cal lenses are employed. The SH signals emanating
from the nine intersections are considered as the outer
product outputs.

The matrix-vector product of a N X N binary matrix
[A] and a N-D column vector B is defined as

Oy3 G, Oy b
Q91 Uog Loy by
D=
| vt Ong -0 Opw by
dy
aybyFaph, +. .+ agpyby dy
_ Qorby + agebs +. ..+ agpby 1. ) )
|t t by L+ by .
dy

Note that a matrix—vector product can be decomposed
into several parallel vector inner product operations.
In Fig. 7, by combining with an additional input cylin-
drical lens, three Fig, 5 type networks, a SHG-based 3-
D vector optical matrix—vector multiplier is shown.
Compared to the previously described algebraic op-
erations, an optical matrix-matrix multiplication is
more complicated. Asan exampls, consider the multi-
plication of two 2 X 2 binary matrices [A] and [B]

(7] = ar; G| b By
Gy dg || ba ba

_ | @bt tigbyy @by + assbyy - e €2 6)
Ua1b1y + Gogboy  ambip + agebyy €1 ey

There are two methods to evaluate this matrix—matrix
product, Using a vector outer product decomposition,
the matrices are first decomposed into vectors and
then are sequentially entered into a physical vector
outer product multiplier. With a properly decom-
posed synchronized temporal sequence, the previously
described outer product processor (see Fig. 6) can be
used for the matrix—matrix product generation. Us-
ing a vector inner product decomposition in combina-
tion with an AND gate-based OTAP provides a faster
optical matrix-matrix multiplier. In Fig. 8, a vector
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Fig. 6. OIAP 3-D vector outer product processor. In addition to
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Fig. 8. OIAP matrix-matrix multiplier. Parallel input spacings
for [A] and [B] are different so that four output channels (after a lens
space integration) are obtained.

.inner product-based OIAP matrix-matrix multiplier

is shown. Unlike the previous examples, both a 3-D
network and unequal input channel spacings are used,
In this network instead of entering the data sequen-
tially as in the case of a vector outer product multipli-
er,?® a fully parallel input format is used. Because of
the parallel format, it possesses an inherently faster
multiplication speed. To collect the channelized mul-
tiplication results at the output an additional ¢ylindri-
cal lens is used.

V. Fundamental Residue Mapping Units using OIAP

The major attraction of the residue number system
is its carry-free arithmetic operation capability.2L,22
In this system, to perform numerical calculation, a set
of relative prime integer bases is used. KEach base
forms a group of independent parallel processing units.
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8HG-based mod5 residue optical adder implementation. At the
interfaces, total internal reflections are used.

To obtain the result in a specific modulo, in each
independent residue channel, various mapping func-
tions are performed. By suitably combining the par-
tial results generated from each processing unit the
final result is formed. Thus aspecific modulo process-
ing unit is the key element to implement a residue-
hased numerical processor. Using electrooptic wave-
guide switches, different modulo residue mapping
units have been proposed.? Next, several SHG-based
all-optical residue mapping units are described and
then used to implement a residue-based matrix multi-
plication.

In a2 modN residue number system the addition is a
circulant operation with the number of integral shifts
determined by the value of addend. Similarly, sub-
traction is also a circulant operation where the subtra-
hend is added but in an opposite direction, To illus-
trate this principle, consider a mod5 addition/
subtraction truth table [see Fig. 9(a)]. To implement
this table, a 2-D optical mapping network must be
constructed. In Fig. 9(b), using a SHG crystal, such a
QOIAP network isshown. For both the summand (min-
uend) and addend (subtrahend), pulse-position coded
inputs are used. The mapping operation is controlled
by the summand (minuend) signals. Thus generated
signals share five output channels. The crystal is cut
and oriented so that desired total internal reflections
can be achieved. Here at any given time only one of
the five addend (subtrahend) channels contains a sig-
nal. In other words, for a pair of input pulses, a SH
output can only be generated at a single intersection.
Again, using an oblique input isochronous wavefront,
the inputs are autosynchronized, and thus no addition-
al delay elements or clocks are needed.

In addition to residue addition/subtraction, using an
OIAP, modN residue multiplication can also be per-
formed. A mod5multiplication truth table, for exam-
ple, is shown in Fig. 10(a). Since the multiplication by
a zero results in a zero, only operations that map the
other numbers, i.e., 1, 2, 3, and 4, are necessary. For
this reason, to implement a mod5 multiplication truth
table, use of a mod4 adder has been suggested.?? In
general, multiplication in modp, where p is a prime,
can be decomposed into addition in mod (p — 1) with
suitable prepermutation and postpermutation net-
works. In Fig. 10(b), using a SHG-based OIAP net-
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Fig. 10. (a)} Mod5 residue multiplication truth table. (b) SHG-

based mod5 optical multiplication implementation. Two SHG

crystals, one for a mod4 addition and another to handle the zero, are

shown. Also, a prepermutation and a postpermutation devices are
also used.

work, an SHG-based residue mod5 multiplication unit
is shown. In addition to three input {output) permu-
tation elements, two separate SHG units, one for im-
plementing mod4 add and another for dealing with
zeros, are employed. Although a multiplier uses more
elements than a corresponding add unit, compared to
other methods?? this is a faster and more compact unit.

VI. Residue-Based OIAP for Matrix Multiplication

In many real-time scientific and engineering prob-
lems, it is necessary to solve alarge number of algebraic
and differential equations. For the solution of these
equations, a large amount of matrix manipulations are
needed. With a digital optical computer, it is essential

to be able to perform fast matrix multiplication. In )

previous sections, using the DMAC algorithm, an AND
element-based binary matrix multiplication prepro-
cessor wag described. In this section, using residue
arithmetic, an alternative integer matrix—matriz mul-
tiplication approach is proposed. Using a residue
number system, integer matrix multiplication can be
decomposed into a set of paratlel relative prime modu-
lo-based residue matrix multiplications. Thus solving
a set of linear equations using residue matrix algebra
can increase computational speed. Details on the so-
lution of integer-valued linear equations using residue
matrix algebra are available.2420

The multiplication of two identical prime modulo-
based matrices is similar to the decimal case. In the
residue case, both multiplication and addition are
evaluated in the specific modulo residue system. A
conventional matrix-matrix multiplier that performs
the multiplication of two N X N matrices ([C] =
[A][B]) contains a 2-D square array of N2 identical
processing elements, each performing an arithmetic/
logic operation that adds to its past contents the multi-
plication results of two present inputs. For the multi-
plication of two modp N X N matrices, each of the N2
cells, for example, C;;, where i,j £ (1,2,.. ., N), executes
recursively fork = 1,2, .., N,

[CIF1 = [Cfi + ayby,] modp, n
where a;,(by;) are the ikth (kjth) element of the matrix
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[A](IB]). As an example, consider the multiplication
of two 4 X 4 mod5 matrices [A] and [B], where

[Al= [B] = mod5,  (8)

[CRR-CR N
[ = X
N oo
S & e
[SRRSUR R
L e
B O
~ Gl N D

Each of the sixteen processing units performs identical
arithmetic operations, i.e., modh-based multiplica-
tions and additions. It can be shown that the corre-
sponding matrix multiplication result is

[C] = [A][B] = mod5. (9)

W bD D e
oo k4 bO G
N O o bo

3
4
0
0

To implement this 4 X 4 residue matrix multiplication
using an OIAP the array shown in Fig. 11(a) may be
used. Inputarrays A and Benter from the left and the
top part of the processor. To guarantee the isochro-
nous data arrival, a number of zero’s are used. In Fig.
11(b}, an individual processing element, a mod5 multi-
plier/accumulator, is depicted. White and black ar-
rows represent the input and SH beams. The residue
multiplier performs on the two present inputs a mod5
multiplication. Its result is first converted from a SH
to a fundamental frequency and then added using a
modb adder to the adder’s previous content. The
optical delay line is adjusted so that the residue adder
previous content arrives isochronously with the
present multiplier output. After four recursions, at
each element C;; the desired output is generated. Us-
ing such residue OIAPs as building blocks, an all-
optical matrix residue processor may be constructed.

Vil. Summary and Conclusion

In this paper, various all-optical array processing
metheds have been introduced. For OIAP implemen-
tations, several nonlinear optical devices, such as a
nonlinear etalon, Kerr gate, optical phase conjugator,
and SHG device, were described. Among various pro-
posed all-optical AND elements, the SHG AND gate is a
preferred candidate. A SHG AND gate can have a
femtosecond response. Fxcept for a frequency
change, a SHG-based OJAP can be monolithically im-
plemented and thus possesses the potential for optical
circuit integration. For multiple-stage SHG-based
OIAP operation, using PFD techniques, the doubled
frequency can be converted back to its fundamental
frequency. The spatially encoded 2-D parallel data
are processed in a locally interconnected lattice-type
OIAP network. For digital optical arithmetic com-
puting, a binary AND gate-based OIAP is discussed. In
principle, for different applications, other elemental
logic and arithmetic operators can also be used. In
Table I, the use of different AND element OIAP arrays,
where the dot and circle represent 2- and 3-D arrays,
respectively, is summarized. Parallel data are as-

 sumed to enter from both the left and bottom of the
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Fig. 11. (&) A 4 X 4 residue, matrix-matrix multiplier with sixteen

identical arithmetic processing cells Cy;. (b) A SHG-based C;; cell

that employs a mod4 multiplier and a mod4 adder., Black and white

arrows represent the SH and fundamental frequency beams. In

addition to the adder and multiplier, a PFD conversion device is
needed.

Tablel. Summary of the Various Proposed Arithmetic O1APs

seee » soes .
soce et esee .
seee eew eoss .
ssne so0e eees .
unsigned binary 2's complement residue  logic vector-vecior
mulfiplication multiphcation rer_product
c cooo o
o cogo o
Q oogo o
°© cooo ¢
vecior-vector matrix-ma?rix matrix-vector
outer-proguct product product

Note: Each dot indicates an elemental processor, The black and
white dots ate the 2- and 3-D arrays for the different computations.
Parallel data enter the processor from both the left and bottem of the
diagram.



network. Using these structures with either a DMAC
or aresidue algorithm, various optical multipliers were
described.

This work was supported in part by a grant from the
U.8. Air Force Office of Scientific Research 84-0144,
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