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The spatial profile and the spectral distribution of a pulse propagating in a parabolic graded-index optical fiber are
derived. Effects due to the x© nonlinearity (self-focusing and self-phase modulation), diffraction (finite beam-
waist effects), and the graded-index waveguiding are incorporated in the theoretical analysis. The fiber graded
index generates a periodicity in the beam diameter. Waveguiding, self-focusing, and diffraction determine the
minimum magnitude of the beam-waist diameter. The pulse phase, amplitude shape, and spectral distribution are
shown to differ from conventional aself-phase modulation resulis.

Over the years, self-focusing of intense pulses has been
observed in many liquids and solids.1* Kelley theo-
retically described the self-focusing process in terms
of critical power.? The propagation of Gaussian
beams in a graded-index waveguide structure leads to
the appearance of a sequence of maxima and minima
in the field intensity along the length of the fiber.b
The first observation of self-focusing in optical fibers
by using picosecond pulses has been reported recent-
1y.8
In this Letter, we examine the combined effects of
the Kerr nonlinearity, diffraction, and graded-index
waveguiding on the spatial and spectral profiles of an
intense puise propagating in a parabolic graded-index
optical fiber. The beam transverse geometrical
shape, radius of curvature, phase, and spectrum are
computed as functions of the fiber parameters and the
pulse peak power. Approximate analytical results are
derived for the beam waist, radius of curvature, and
phase.

The approximations that we make are that (1) the
graded-index profile is approximated by n = ny(1 —
Ar?/2ny); (2) the fiber core—cladding boundary condi-
tions are neglected, assuming that the beam diameter
a is much smaller than the core radius r; (3) effects of
group-velocity dispersion are neglected; (4) the self-
steepening®? of the amplitude is neglected, which in
the notation of Ref. 8 translatesinto ¢V < 0.1; (5) the

quadratic index of refraction ng is not modified by the

radial variation in the ordinary index of refraction; {5)

one component of the electric field is kept, i.e., we are

neglecting the vector nature of the electric field; and

(7¥ the graded index of refraction is of the order re-

quired to guide’ the beam. Under these assumptions

the envelope of the electric field, ¢, ocbeys the equation

2
Vae — 2ike’ — kkor’e + -'firk-V lel%e = 0, (1)
0

where V2 is the transverse component of the Lapla-

clan, ¢ = 3¢/0z, ko = RA = 2knpA/r2, and A is the

relative index difference between the core center and
the cladding.

The initial pulse is assumed to be Gaussian both in
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the transverse plane and in the comoving coordinate
system u = {(z/v; — t), where vy is the pulse group
velocity, a is the initial beam radius, 7 is the pulse

_duration, and ¢ is the magnitude of the pulse amphi-

tude. This initial condition assumes that the beam
radius is much smaller than the core radius.

Below, the product ey exp(—12/272) is denoted by %.
Then an approximate solution to Eq. (1), with the
above boundary condition, correct to order r%/a?, can
be obtained through the trial solution®:

o £ r .k
elr,z, ) =————exp| ———— — i — plz, )r*
wlz, u) [ &%z, u) 2

+ ika(z, u)] s (2)

a

where the different functions can be interpreted as
follows: @ is the normalized beam radius, p is the
inverse of the beam radius of curvature, and ko is the
longitudinal phase on the fiber axis. This approxima-
tion of self-similarity of the beam is well justified for
powers smaller than the critical power, in particular
for instances where wpnar and wyi, are not too far apart.

The equations satisfied by these subsidiary func-
tions are

S

_ 1 dw
a w 9z )
o _ @ p ey
b= (B=O) (4)
3w 1
—+ A+ (2C-B)—==10, 5
622 (2C-B) (5)

. where A = 1/L,2, B = 4/a%k? = 1/L4?, C = nsgy?/nga’,

and L, and Lg are the characteristic lengiths for wave-
guiding and diffraction, respectively.

The solutions to Eqs. (4)—(6), satisfying the bound-
ary conditionsw =1,p=0,and o« =0 atz =0, are

w = [B cos(yz) + 6]1/2, (6)
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Fig. 1. Minimum beam waist as a function of normalized

. peak power P/P.. A is the relative refraction index differ-
ence between the core center and the cladding. Tn silica
fibers P, =~ 108 W,

1 Bysintys)
2 [ cos(yz) + 8] @

— /2
arctan[(g—‘gc) tan(Amz):l ’

A
(8)

where y = 2AV% 8= (20— B+ A)/24,and § = (A - 2C
+ B)/2A. The above solutions are valid for 8 < § or,
equivalently, B — 2C = 0. For negative ns (defocusing
medium), 8 < 3§ is satisfied for all values of «. For
positive ny (focusing medium), § = § for the critical

p:

ha=pLB=C)
2(B — 2C)2

field ¢,, which is given by ¢ = 2no/a2kny. In the low-

intensity limit, Eqgs. (6)—(8) lead to the usual results of
(Gaussian beams propagating in lenslike media.l%1
Equation (6) shows that the normalized beam radi-
us w varies periodically along the optical fiber length.
The period of variation depends only on the waveguid-
ing characteristic length L,. The magnitude of wmin,
the minimum. normalized beam waist, depends on all
three characteristic lengths. In Fig. 1, the minimum
beam waist is plotted as a function of the pulse-nor-

malized peak power P/P, for different graded-index-

parameters A, where P, is the critical power for self-
focusing. The minimum beam diameter decreases for
increasing peak powers and collapses at P = P,.

The inverse of the radius of curvature (p) is plotted
in Fig. 2 as a function of the normalized fiber length
2zf(wL,). For increasing peak powers, the curvature
is clearly enhanced periodically by self-focusing at the
beam-waist locations.

The total phase of the electric field can be computed
by using Eqs. (2}, (7), and (8). This phase, and conse-

-quently the spectral broadening arising from self-
phase modulation, is radially dependent. It is worth
noting that the time-dependent part of the phase ¢
{denoted ¢,/, equal to total phase — wot), reduces to
that of the traditional self-phase-modulation theory in
the case of a homogeneous medium (ks = 0) and for an
incoming plane wave (@ — ). Furthermore, for weak
waveguiding (ks — 0) but finite initial heam diameter,
the time-dependent phase ¢,” reduces to

. 2r?
1im 6y = fup (1 - ) o
where ¢oom is —(kng/2no)é22. Thus in this limit the
spectral extent as a function of the radius varies as
(1 — 2r%/a?), Equation {9) is valid for r/a <« 1.

In Fig. 3, the longitudinal phase contribution ke(z, u
= {)), denoted « phase, is plotted as a function of the
normalized fiber length for different power levels. As
shown, the « phase mostly increases by steps at z
locations corresponding to the periodical positions of
the minimum beam waist. As a result, the total
amount of the longitudinal phase yielded by the pulse
is.often much larger than the usual self-phase modula-
tion, and it depends strongly on the waveguiding, dif-
fraction, and nonlinear parameters. Itis worth noting
that for z « L,, the regularized « phase, defined as the
value of the « phase at a certain power minus its value
for zero intensity, has the same sign as $spm; however,
this sign changes for z > L,. Physically, this result
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Fig. 2. Inverse of radius of curvature as a function of nor-
malized length 2z/xL,, for a graded-index fiber (¢ = 1.5 gm,
A=0.48%,and L, = 15.3 um). {(a) P/P,=0.1; (b) P/P,=0.5;
{c) P/P. = 0.99.
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Fig. 3. o Phase as a function of the normalized length 22/
why. () PP, = 0.1; (b) P/P. = 0.9; {¢) P/P, = 0.99.
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Fig. 4. o Phase normalized to its maximum value plotted
versus time. (a) Conventional self-phase-modulation phase
for P/P, = 0.1; (b) P/P, = 0.1; (¢) P/P, = 0.992. Maximum
phases are 0.92, 0.55, and 1880 rad, respectively (a = 25 ym,
A = 0.48%, z = 10 em, and + = 15 psec).
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Fig. 5. Spectral broadening of a Gaussian pulse (r = 15
psec) outgoing from a graded-index fiber (@ = 25 pm, A =
0.48%). P/P.=0.997 and z = 0.1 m.

leads to the reverse of the red leading the blue in the
supercontinuum and may have important conse-
quences ch soliton propagation in graded-index fibers
and pulse compression. Finally, one notices that the
o phase approaches a ladder function for values of ¢
that equalize B and 2C (ie.,, P — P,).

The temporal distribution of the longitudinal phase,
the « phase, can be studied by using Eq. (9). If we
define the parameter s as C' = sBlexp(—u?/72)], where s
= 1/2 corresponds to P = P,, then

o phase,,, ( A)1/2 1

Pepm(tt = 0) B) s

o 1 =25 exp(—u¥/7)]"2 + s exp(—u?/7®) — 1) .
[1—2s exp(—ug/’rQ)]l/2

(10
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InFig. 4, the « phase normalized to its maximum value
[Eq. (10}] is plotted as function of time for different
power levels. For small peak powers, the width of the
phase envelope is 2 smaller than the conventional
self-phase-modulation phase as predicted by Eq. (10}.
As the pulse peak power increases and tends to the
critical power, the phase width significantly decreases
and the value of the phase at its maximum increases
dramatically.

The spectral distribution of intense ultrafast pulses
propagating in a graded-index fiber is computed by
taking the Fourier transform of the field envelope de-
fined by Eqs. (2) and (6)-(8). For small peak powers
(P « P,) self-phase-modulation spectra generated in
graded-index fibers are similar to the conventional
self-phase-modulation-broadened spectra.l? TFor
peak powers near the critical power for self-focusing
(P = P.), new self-phase-modulation features appear
(Fig. 5). Self-phase-modulation specira in the pres-
ence of self-focusing are quite distinct from those pre-
dicted by the conventional self-phase-modulation the-
ory. There is an intense peak at the laser wavelength
over a much weaker background of white light. This
supercontinuum broadening is due to the narrowing of
the « phase, as observed in Fig. 4. This is because
most of the pulse energy is not modulated. It is remi-
niscent of frequency supercontinua generated much
earlier by self-focusing filaments.3

In conclusion, the beam transverse shape and the
radius of curvature in the presence of waveguiding,
selffocusing, and diffraction in a parabolic index ma-
terial have been derived. The phase is qualitatively
different from that predicted by the conventional self-
phase modulation theory., The results in both the
time domain and frequency domain are modified.
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