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A higher-order Poincaré sphere and Stokes parameter representation of the higher-order states of

polarization of vector vortex beams that includes radial and azimuthal polarized cylindrical vector beams

is presented. The higher-order Poincaré sphere is constructed by naturally extending the Jones vector basis

of plane wave polarization in terms of optical spin angular momentum to the total optical angular

momentum that includes higher dimensional orbital angular momentum. The salient properties of this

representation are illustrated by its ability to describe the higher-order modes of optical fiber waveguides,

more exotic vector beams, and a higher-order Pancharatnam-Berry geometric phase.
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Polarization is one of light’s most salient features, even
more so than its spectral or coherence properties [1]. A
prominent geometric representation of polarization came
in 1892 when Poincaré showed that the state of polariza-
tion (SOP) of a light beam can be described as a point on
the surface of a unit sphere now known as the Poincaré
sphere (PS) (Fig. 1) [2]. The PS unifies all of the funda-
mental polarization descriptors, where the SOP as repre-
sented by a complex Jones vector is mapped to the sphere’s
surface through the Stokes parameters (SPs) as the sphere’s
Cartesian coordinates [1]. This geometric connection
provides not only remarkable insight into but also greatly
simplifies otherwise complex polarization problems, and
as a result has become an ubiquitous device with which
to treat polarization phenomena in numerous and
varying fields.

Despite this powerful utility, the SOPs represented by
the PS in its current form are limited to the simplest and
most fundamental homogenous plane wave solutions of
Maxwell’s vector wave equation. Most recently there has
been increasing interest in higher-order solutions which
admit spatially inhomogeneous SOPs such as in the cylin-
drically symmetric coordinate systems of laser cavity
resonators and fiber optic waveguides [3]. Of particular
interest are the vectorial vortex (VV) beams also referred
to as spirally polarized beams [4] such as radial and azimu-
thal polarized cylindrical vector (CV) beams [5] and their
optical fiber analogs the TM01 and TE01 fiber modes [6],
respectively. They extend the properties of more conven-
tional plane wave SOPs such as in their ability to produce
strong longitudinal field components and smaller waist
sizes upon focusing by high numerical aperture objectives
[7]. This has been exploited in applications such as spec-
troscopy [8], particle acceleration [9], microscopy [10], and
optical trapping [11], to name a few. These higher-order
SOPs also naturally arise in crystal optics [12], Mie scat-
tering [13], cosmic background radiation [14], and are
related to the C-point organizing symmetries in the field

of singular optics [15]. As such, a representation of the VV
beams in the framework of the PS would offer great utility.
In this Letter, it is shown that the PS can be extended to a
higher-order PS representation of the higher-order SOPs of
VV beams. Higher-order SPs are also derived and dis-
cussed. The salient properties of this higher-order represen-
tation are discussed and its utility demonstrated in its ability
to describe the higher-order modes of optical fiber wave-
guides, other exotic vector beams, and a higher-order
Pancharatnam-Berry geometric phase (GP).
The PS elucidates the rich connection between optical

angular momentum (AM) and a light beam’s SOP. As
suggested by Poynting [16] and demonstrated by Beth
[17], light can possess a spin angular momentum (SAM)

FIG. 1 (color online). Poincaré sphere representation for plane
wave states of polarization. The poles represent right and left
circular polarization, the equator linear polarization, and inter-
mediate points between the poles and equator elliptical polar-
ization. The northern and southern hemispheres separate right
(red) and left (blue) handed ellipticity. Antipodal points are
orthogonal, and any state of polarization is given as their linear
combination.
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of �@ (� ¼ �1) per photon associated with circular
polarization (CP). The poles of the PS then represent the
optical SAM eigenstates, which in turn form the constitu-
ent components of any plane wave SOP. Light can carry
in addition to its SAM a higher dimensional orbital angular
momentum (OAM) of ‘@ (‘ ¼ �1;�2;�3; . . . ) per pho-
ton associated with a helical wave front described by the
azimuthal phase factor expð�{‘’Þ called an optical vortex
(OV), ’ ¼ arctanðy=xÞ being the azimuthal coordinate
[18]. The integer ‘ is referred to as the topological charge
and describes the number of the vortice’s 2� helical phase
windings in one wavelength. For paraxial light beams, the
SAM and OAM are additive, with a total optical AM per
photon of J ¼ ð‘þ �Þ@. The SOPs of VV beams are a
linear combination of orthogonal CP OVs of opposite
topological charge [19] where the constituent components
are eigenstates of the total optical AM. For a monochro-
matic paraxial light beam this can be represented as a two-
dimensional Jones vector given by the equation

jc ‘i ¼ c ‘
RjR‘i þ c ‘

LjL‘i; (1)

with respect to the orthonormal circular polarization basis
fR‘; L‘g [20] such that

jR‘i ¼ expð�{‘’Þðx̂þ {ŷÞ= ffiffiffi
2

p
; (2)

jL‘i ¼ expðþ{‘’Þðx̂� {ŷÞ= ffiffiffi
2

p
: (3)

Equations (1) and (2) represent a right circular polarized
(RCP) and left circular polarized (LCP) OVof topological
charge �‘ and þ‘, respectively. Equation (1) can also be
expressed with respect to the horizontal and vertical polar-
ization basis fH‘; V‘g through the relations jH‘i ¼ ðjR‘i þ
jL‘iÞ=2 and jV‘i ¼ �{ðjR‘i � jL‘iÞ=2, where

jV‘i ¼ cosð‘’Þx̂þ sinð‘’Þŷ; (4)

jH‘i ¼ � sinð‘’Þx̂þ cosð‘’Þŷ; (5)

with coefficients c ‘
H ¼ ðc ‘

R þ c ‘
LÞ and c ‘

V ¼
{ðc ‘

R � c ‘
LÞ, as well as the diagonal and antidiagonal

polarization basis fD‘; A‘g through the relations jD‘i ¼
ðjH‘i þ jV‘iÞ=

ffiffiffi
2

p
and jA‘i ¼ ðjH‘i � jL‘iÞ=

ffiffiffi
2

p
, where

jD‘i ¼ cosð‘’þ �=4Þx̂þ sinð‘’þ �=4Þŷ; (6)

jA‘i ¼ sinð‘’þ �=4Þx̂� cosð‘’þ �=4Þŷ; (7)

with coefficients c ‘
D ¼ ðc ‘

H þ c ‘
VÞ=

ffiffiffi
2

p
and c ‘

A ¼ ðc ‘
H �

c ‘
VÞ=

ffiffiffi
2

p
. For ‘ ¼ 0, the bases of Eqs. (2)–(7) reduce to the

standard plane wave SOP bases. For ‘ � 1, the VV beam
of Eq. (1) is characterized by the existence of an on-axis
polarization singularity of topological charge ‘ referred
to as a V point [21]. Beams of this nature include vector
Laguerre-Gaussian (LG‘

p) laser modes, even those of

higher radial order (p � 1) [19,22].

Normalized higher-order SP in the circular basis of
Eqs. (2) and (3) are given by [23]

S‘0 ¼ jhR‘jc ij2 þ jhL‘jc ij2 ¼ jc ‘
Rj2 þ jc ‘

Lj2; (8)

S‘1 ¼ 2ReðhR‘jc i�hL‘jc iÞ ¼ 2jc ‘
Rjjc ‘

Lj cos�; (9)

S‘2 ¼ 2 lmðhR‘jc i�hL‘jc iÞ ¼ 2jc ‘
Rjjc ‘

Lj sin�; (10)

S‘3 ¼ jhR‘jc ij2 � jhL‘jc ij2 ¼ jc ‘
Rj2 � jc ‘

Lj2; (11)

where � ¼ argðc ‘
RÞ � argðc ‘

LÞ and ðS‘0Þ2 � ðS‘1Þ2 þ
ðS‘2Þ2 þ ðS‘3Þ2. A fully polarized beam is considered such

that S‘0 ¼ 1, yet this formalism may describe unpolarized

or partially polarized VV beams where S‘0 < 1. For ‘ ¼ 0,
the SP components of Eqs. (8)–(11) reduce to the standard
plane wave SP components. S‘0 represents the total beam

intensity where jc ‘
Rj2 and jc ‘

Lj2 are the intensities of
Eqs. (2) and (3), respectively, and S‘3 the beam content

of each. This equivalently represents the overall degree of
ellipticity of the VV beam analogous to the degree of
ellipticity of a plane wave SOP described by the standard
SPs. S‘1 and S‘2 contain the relative phase information �
between the RCP OV and LCP OV of Eqs. (2) and (3),
respectively. This equivalently represents the relative po-
larization orientation of the VV beam analogous to the
orientation of a plane wave SOP described by the
standard SPs.
Experimental measurement of the higher-order SPs can

be carried out analogous to the technique of Stokes polar-
imetry for the standard SPs, which is effectively a mea-
surement of the optical SAM content of a beam using a
linear polarizer and quarter wave plate [1]. For the higher-
order SOPs of VV beams, the optical OAM associated with
the topological charge of the OVs must also be measured.
This can be accomplished using conventional optical ele-
ments such as a �=2 cylindrical lens mode converter and
fork diffraction grating to perform the equivalent operation
of the linear polarizer and quarter wave plate, respectively
[24]. The VV beams form a direct product space between
the optical SAM and OAM subspaces and therefore their
experimental measurement through the higher-order SPs
requires their decomposition into these parts. A detailed
analysis of this experimental measurement is the subject of
a future paper. It should be noted that the V-point polar-
ization singularity of the VV beams results in an on-axis
intensity null. Equations (8)–(11) take this into account
through the measurement of the topological charge of the
OVs proposed above. The higher-order SPs then may offer
an additional way to describe polarization singularities
beyond the standard SPs [15].
The higher-order PS is constructed using S‘1, S

‘
2, and S‘3

as the sphere’s Cartesian coordinates with S‘0 the unit

radius from the origin and the sphere’s spherical angles
(2�; 2�) given by [1]
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2� ¼ tan�1ðS‘2=S‘1Þ; (12)

2’ ¼ sin�1ðS‘3=S‘0Þ: (13)

The resulting sphere describes a higher-order VV SOP at
each point (2�; 2�) along the surface where the sphere’s
poles represent CP OVs—the total optical AM eigenstates,
the equator represents VV SOPs that are linear polarized
everywhere, and intermediate points between the poles
and equator represent elliptically polarized VV SOPs.
This higher-order PS has two salient features: (1) For
‘ ¼ 0 the higher-order PS reduces to the standard plane
wave PS, which is only a zeroth order representation.
(2) For ‘ � 1 the OV and CP handedness of each pole
can be in the same, j‘j ¼ j�j, or opposite, j‘j � j�j, sense
and therefore in the higher-order basis two spheres must
be described.

This is illustrated in Figs. 2 and 3 for ‘ ¼ �1 higher-
order PSs. For ‘ ¼ þ1 shown in Fig. 2, the higher-order PS
can completely characterize a general CV beam SOP [5]
such as radial and azimuthal polarization which is equiva-
lent to the TE01 and TM01 fiber modes. For ‘ ¼ �1 shown
in Fig. 3, the higher-order PS can describe the so-called
�-vector beams [11] which is equivalent to the HEodd

21 and
HEeven

21 fiber modes. This representation holds for spheres
of ‘ > j � 1j.

The utility of the higher-order PS is illustrated by its
ability to describe the higher-order polarization phenome-
non of an optical fiber waveguide. Considering a weakly

guiding, step index, circular core fiber that supports up to
the LP01 mode [6], excitation of all the modes within the
fiber can be expressed in terms of Eqs. (4) and (5) as

X

‘

jc ‘i ¼
X‘¼þ1

‘¼�1

ðc ‘
HjH‘i þ c ‘

V jV‘iÞ; (14)

where jH0i ¼ HEodd
11 , jV0i ¼ HEeven

11 , jVþ1i ¼ TE01,
jHþ1i ¼ TM01, jV�1i ¼ HEodd

21 , and jHþ1i ¼ HEeven
21 .

Representation by the higher-order PS of Eq. (14) is ac-
complished by using a superposition of spheres for ‘ ¼ 0,
‘ ¼ þ1, and ‘ ¼ �1. The state jc ‘i on each sphere
represents a linear combination of the respective fiber
modes, where jc ‘

Hj and jc ‘
V j are interpreted as amplitude

of each fiber mode, and argðc ‘
HÞ and argðc ‘

LÞ their propa-
gation constants. This can be measured at the fiber output
through the measurement of the higher-order Stokes pa-
rameters. This same approach may be used to represent
more exotic vector beams such as the full Poincaré beams
[25], hybrid vector beams [26], or double-mode vector
beams [19,22]. This representation may fall short of
representing any arbitrary vector beam such as those with
radial-variant SOP [27]. While these beams are novel in
and of themselves, they need not apply to this representa-
tion because their constituent components are not eigen-
states of the total optical AM.
The higher-order PS can also illustrate a higher-order

Pancharatnam-Berry GP�g. First shown by Pancharatnam

[28], a plane wave SOP taking a cyclic path on the standard
PS acquires a phase directly proportional to half the area
�=2 subtended by the circuit. On the higher-order PS, this
is equivalent to a CP OV taking a geodesic from north to

FIG. 3 (color online). Higher-order PS representation for
(j‘j ¼ j�j; ‘ ¼ �1): The poles (2�;��=2) represent orthogonal
CP ‘ ¼ �1 OVs. Equatorial points (2�; 0) represent �-vector
beams [11]. The horizontal and vertical basis of Eqs. (4) and (5),
ð0; 0Þ and ð�; 0Þ, represent �-radial and �-azimuthal vector
beams, respectively, and equivalently the HEodd

21 and HEeven
21

optical fiber modes. Intermediate points between the poles and
equator describe elliptically polarized �-vector beams.

FIG. 2 (color online). Higher-order PS representation for
(j‘j � j�j; ‘ ¼ þ1): The poles (2�;��=2) represent orthogonal
CP ‘ ¼ �1 OVs. Equatorial points (�; 0) represent generalized
CV beams [5] including the horizontal and vertical basis of
Eqs. (4) and (5), ð0; 0Þ and ð�; 0Þ that represents radial and
azimuthal or equivalently the TM01 and TE01 fiber modes,
respectively, and the diagonal and antidiagonal basis of
Eqs. (6) and (7), ð�=2; 0Þ and ð3�=4; 0Þ, that represents spiral
polarization [4]. Intermediate points between the poles and
equator represent elliptically polarized CV beams.
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south pole and then back, which can be physically carried
out using two half wave plate-�-cylindrical lens mode
converter pairs through the angle of rotation � of the
second pair [29]. This transformation can be analyzed
using the Jones matrix formalism for a light beam baring
both SAM and OAM [24] where using the corresponding
Jones matrices for the pairs it is easily shown that the initial
CP OV acquires an additional phase factor proportional to
ð‘þ �Þ2�, which is the GP, the constant of proportionality
being only a sign factor. From a basic geometric visual-
ization of this transformation on the sphere, it is seen that
the angle of rotation of the second pair � is equivalent to a
rotation of 2� about the sphere’s polar axis which in turn
sweeps out between the geodesic paths the solid angle
2� ¼ �=2. The resulting GP on the higher-order PS is
then given by

�g / ð‘þ �Þ�=2: (15)

This argument obeys the 2-to-1 homeomorphism between
the SU(2) space of the Jones calculus and the SO(3) space
of the PS which has similarly been made by Bhandari and
Samuel [30] and Simon et al. [31] in regard to the GP on
the standard PS. The GP of Eq. (15) scales is additive
between the optical SAM and OAM as expected since
the higher-order PS is the direct product space between
the optical SAM and OAM subspaces where the half wave
plate and �-cylindrical lens mode converter effect each,
respectively. For the higher-order PS representation of two
spheres, it may be interesting to explore the properties of
this GP in, for example, jumps between spheres which can
be carried out by a single pair, or in the context of Berry’s
argument that the GP is due to the flux of an artificial
magnetic monopole situated at the PS origin [32,33]. A
more detailed analysis and an experimental verification are
the subject of a future paper.

In conclusion, a higher-order PS representation of the
higher-order SOPs of VV beams has been presented. The
higher-order PS has been constructed by naturally extend-
ing the basis of polarization in terms of the optical SAM to
the total optical AM that includes the higher dimensional
OAM. Higher-order SP have been derived and discussed in
terms of a light beam’s measurable decomposition into
optical SAM and OAM parts. The higher-order PS repre-
sentation reduces to the standard plane wave PS, shown to
be a zeroth order representation, and a degeneracy into two
spheres. The utility of these properties is demonstrated in
their ability to describe the higher-order modes of optical
fibers, more exotic vector beam, and the Pancharatnam-
Berry GP for higher-order SOP.
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