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presented.

Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a
Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its
group velocity can be subluminal (slower than the speed of light) when the optical frequency o ap-
proaches a critical frequency .. A free space dispersion relation for a Bessel beam, the dependence of its
wave number on its angular frequency, is developed from which the Bessel beam's subluminal group
velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has
associated parameters that allow slowing near a critical frequency. The application of Bessel beams with
1 pm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is

© 2015 Elsevier B.V. All rights reserved.

Light's salient degrees of freedom are the independent para-
meters that completely describe an electromagnetic wave (in the
paraxial approximation) and include polarization, wavelength, and
time [1]. Most recently, light's space degree of freedom has re-
ceived significant attention via the sub-discipline of optics that can
be referred to as complex light or structured light [2]. The study of
complex light is a veritable renaissance of optics; using light's
space degree of freedom many classical optics phenomena have
been revisited with novel results, such as double slit diffraction [3],
the mechanical Faraday effect [4,5], and Fermat's principle [6G].
Additionally, using light's space degree of freedom the funda-
mental limits of many optics applications have been addressed,
e.g., the transmission data rate of optical fiber communication can
potentially be increased beyond that single mode optical fibers via
space division multiplexing [7,8], and it is possible to image below
the diffraction limit via STED microscopy [9,10].

A Bessel light beam is an example of a light beam described by
a special function. A Bessel beam is a light beamn that in contrast to
more conventional Gaussian beams possesses noteworthy prop-
erties, such as, “self-healing” and diffraction-limited propagation
associated with a pencil-like beam profile [11,12]. Due to these
properties, Bessel beams have been extensively studied and used
for a number of applications; for comprehensive reviews see
[13,14]. When using a Bessel beam for optical trapping it is pos-
sible to simultaneously trap multiple particles in well-separated
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planes [15], and make a particle tractor beam [16,17]. Also, when
using a Bessel beam's line profile for light sheet microscopy it is
possible to rapidly image biological samples (e.g. tissue) in three-
dimensions [18,19].

In this work, the dispersion of a Bessel beam in free space is
investigated. It is shown a Bessel beam is a natural waveguide and
its group velocity can be subluminal (slower than the speed of
light) as compared to a Gaussian beam in free space. A free space
dispersion relation for a Bessel beam, i.e., the dependence of its
wave number on its angular frequency, is outlined from which the
Bessel beam’s subliminal group velocity is derived. It is shown for
reasonable laboratory conditions a Bessel light beam has asso-
ciated parameters that allow slowing near a critical frequency. The
application of Bessel beams for a natural optical buffer in free
space is presented,

The wave equation in cylindrical coordinates is [11,12]:

(V2(l', 9. 2) ~ kz)w(r. 0, 2)=0, (1)

where (r, ¢, z) are cylindrical coordinates, k = 2x/4 is the wave
number, 4 is light's wavelength. As a solution to the wave equation
a Bessel beam is derived via separation of variables where

w(r, ¢, 2) = RN P Z(2):

y (1, ¢, 2) = ], (kir)exp(ik,z)exp( — iwt), @)
where k and k, are the transverse and axial propagation wave
numbers, respectively.

The relationship between the transverse and axial wave num-
bers is:
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Fig. 1. (a) Group velocity of a Bessel light beam as a function of angular frequency and (b) group index of a Bessel light beam as a function of angular frequency. o is in units
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The propagation constant of the beam is given by dispersion
relationship:
nw)o

k(w) = ——,

W= @

where n(w) is the index of refraction of the medium in which the

Bessel light beam propagates, c is the speed of light, and o is

light's angular frequency.

Using Eq. (4), Eq. (3) can be rewritten as dispersion relation:

2 3, O
a” (k) = =k~ + ki,
n n

(5)
) 2 2 12
aky) = [C—zkzz + ‘C—zk_:,[) .
n n (6)
and
Cz 1j2
w(ky) = [-—ZRZZ + mz] :
n 0]
The critical frequency is defined as:
_ck
= (8)

which represents the frequency of the number of standing waves
in perpendicular transverse direction,

Effectively, Eq. (7) embodies a free space dispersion relation-
ship @ vs k for a Bessel light beam in free space, i.e., the depen-
dence of its angular frequency on its axial wave vector.

The group velocity of a Bessel light beam can then be derived
from this dispersion relation via the definition of group velocity

[1}

Vo, = S (kz)

B ok, ©
. Subsequently v; becomes

1c? c* R
Vs = —=2k,| 5k2 + 02 '
BT Z[ e (10)

62k2 5 1j2°
(? i ""] an
Using Eq. (3), Eq. (11) can be rewritten as:

SE -

‘-’g‘z = A
2 P, 2 172
(nzk n2k1+“’c 12
Using Eq. (8), Eq. (12) can be rewritten as;
2
" %(kz — k2
L 1/2
(¥) (13)

Finally, using Eq. (4) and again Eq. (8), Eq. (13) can be rewritten
for v, as:

2112
c ¢
e (1-(%]
ﬂ[ o] (]4)

From Eq. (14), when @ approaches the critical frequency v, , = 0
the Bessel beam stops. Fig. 1a shows vg, vs @. For (o = @), the
beam is frozen.

The critical frequency is defined via the transverse wave
number and diameter of the Bessel light beam to form a set of
standing waves

2n

h=p (s
where a is the beam diameter of the central lope Bessel light
beam. Consider a Bessel light beam with a beam diameter of
a = .63pm propagating in air (n = 1). The corresponding transverse
wave number is given by k = 10um-. Then, the Bessel light
beam's critical frequency is given by o, = 3 fs~1 corresponding to a
wavelength of 1. = 632 nm (red light).

A plot of v ; (Eq. (14)) for the example just described is shown
in Fig. 1(a). Slowing occurs near w.

An effective group index of refraction ng can also be defined
from Eq. (14): ‘

é
Ng = —,

Yoz (16)
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A plot of the group index ng (Eq. (17)) for the same example
shown in Fig. 1(b). The group index ng becomes large as @ — a; at
@ = ¢, Ng = 00,

The natural slowing of a Bessel light beam in free space can be
used as a free space delay line or an optical buffer. As examples,
consider Bessel light beams whose wavelengths are given by
41 =632nm and 1 = 800 nm. The parameters for i ~ 632 nm be-
come k = 2zfa, a(t) = 0.63x, and k. = 10pm-! for n = 1 (air) such
that we=kec/n=3fs"1. The laser 1~632nm, =~ 298 57,
slowing will occur. The parameters for 1~ 800nm become
k =2xfa, a@)=1u and k =63pm! for n=1 (air) such that
we = kefn=241fs1 and laser ay, = 2.4 fs~! will result in v; ~ 0,

Consider the time it takes that Bessel light beam propagate
over a distance ¢ given by t = £/v, as compared to a Gaussian light
beam propagating over the same distance using an axicon lens or
SLM over beam length of # = 1 cm and beam waist of @ = 1 pm. For
ng~3 the time delay is given by 100 ps to 200 ps.

In support of Bessel beam slow down concept in free space and
in dielectric media with index n, Padgett reported in Science [20]
and most recently at ICOAM conference 8/4/15 on experimentally
measuring propagation delay of Bessel beam on the order of few
10's fs. The salient difference of our research from [20] is that we
show dependence of Bessel beam slow down on transverse beam
size, a, the value of critical angular frequency ®. near input laser
frequency @, and dependence of group index n, on Bessel carrier
angular frequency, @. In addition, selecting Bessel beam spot size
of a around 1 pm the beam can be used as an optical buffer to
obtain 100 ps delay. Finally, the concept of Bessel beam being a
natural waveguide for slowing light was submitted as a disclosure
for patenting in November 2011 and delayed this submission.

In conclusion, it was shown a Bessel light beam is a natural
waveguide in air and in dielectric. Its group velocity can be sub-
luminal (slower than the speed of light). A free space dispersion
relation for a Bessel light beam, i.e., the dependence of its wave
number on its angular frequency, was outlined from which the
Bessel beam's subluminal group velocity was derived. It was
shown for reasonable laboratory conditions a Bessel has associated

parameters that allow slowing near a critical frequency. The ap-
plication of Bessel beams for a natural optical buffer in free space
is described.
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manuscript and early discussions.
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