# Offshore Wind Farms for Clean and Renewable Energy – Towards a Systematic Framework to Evaluate their Environmental and Societal Impact

Team 3, CCNY CRV Proposal, 6/29/22

Hansong Tang (Team Lead, civil eng.)

Vasil Diyamandoglu (civil eng.)

Naresh Devineni (civil eng.)

**Kyle McDonald (earth and atmospheric sciences)** 

Akira Kawaguchi (computer sciences)

**Alexandar Tzanov (CUNY high performance computing center)** 

**Grace Chang (Integral Consulting)** 

**Branko Glisic (Princeton Univ., eng.)** 

#### **Expertise critical in project**

Fluid mechanics and simulation

**Water quality** 

**Data science** 

Remote sensing

**Gaming and networking** 

**Computing techniques** 

Ocean environmental modeling

Structure health monitoring

## Background

Farm, R.I., the 1st and only US wind farm

## Offshore wind (OSW) energy

- Green, renewable energy
- US resource: four times the generating capacity of electric grid

## Recent examples of OSW Investment (as of today)

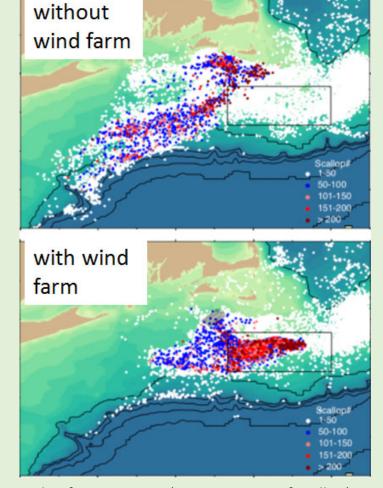
- Federal --- 7 OSW farms, built by 2025, announced by Biden administration in Oct. 2021.
- NYS --- 2022 NYS OSW investment: \$500M
- NYC --- In Sept. 2021: a 15-year, \$ 191M OSW plan.
- CUNY --- 2021 \$10M RFI Offshore wind power/green energy. \$3M student training on OSW energy at KCC.





NY ongoing OSW projects (NYSERDA)

## Problem and framing question


#### **OSW farm problems**

- where to allocate a farm, how?
- how to design supporting foundation and power transmission cable?
- Impact to environmental, ecological systems (larval, coral reef, ....?
- wind farm vulnerability to ocean wave?
- .....

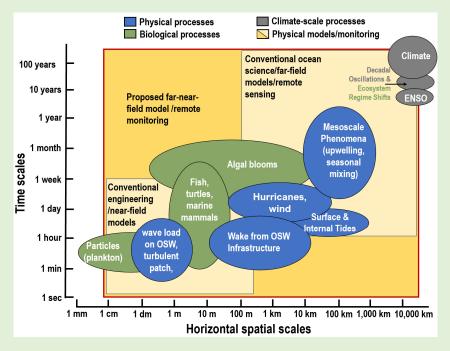
#### Framing question:

Imagine if we had the knowledge to inform the planning and building of offshore wind (OSW) farms

-- What would that look like?



Example of OSW impact (concentration of scallop), 100 turbines, in Rhode Island water (Chen et. al 2021)


## Challenge and objective

### Challenge

- Multidisciplinary: coastal/civil/electric engineering, environmental sciences, oceanography, marine ecology, atmospheric science, social science, ....
- Multi-processes at drastically different scales.
- Status: no modeling methods/packages to reliably and directly evaluate the impacts.

### **Objective**

- A high-fidelity, modeling-monitoring-data framework for the OSW impact on environments and vice versa.
- A prototype study of an OSW farm, fundamental processes, scales and magnitudes.



Complexity of the processes.

## **Innovations**

#### **Intellectual Merits**

- The modeling-monitoring-data system built on our unique, newly developed capabilities
- The first of its kind, highly desired breakthrough for OSW farm problems
- Revealing various processes unavailable before due to technical limitations

#### **Broader Impacts**

- An unprecedented platform to study OSW problems, aid planning, permitting, installation, and operation, ...
- Co-existence of OSW farms with community, ecosystems, navigation, recreation, etc.
- Promote renewable, green energy for communities at the local, regional, national levels

## **Making difference**

- Topic --- a) timely, b) multidisciplinary, basic/applied research, c) broad impacts on science/engineering, on national, regional, and local stakeholders
- Technique --- built on unique, new capabilities of the team members, 1+1 >> 2 technically
- Funding --- growing quickly at federal, state, and city levels, from various agencies
- Benefit --- new research at CCNY: in OSW, and team members' own fields

## Technical approach

### Theme 1 Hydrodynamic and environmental processes

- Modelling of ocean hydrodynamics
- Remote sensing ocean hydrodynamics and environments
- Water quality valuation

## Theme 2 Impacts between OSW farm and the ocean

- OSW impact on aquatic environment, awareness of the community
- Vulnerability of OSW infrastructure

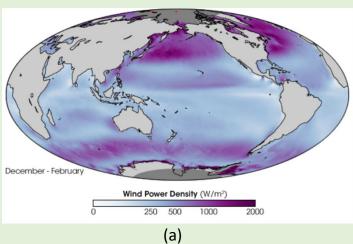
## Theme 3 Data-driven modeling and computer integration

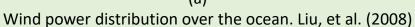
- Data-driven modeling
- Computer integration, an OSW "gamebox" to educate community/society

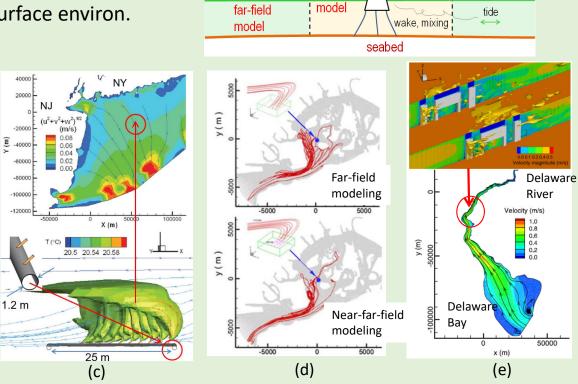
## Site of study

Location: New York Bight, or Block Island Wind Farm (RI), or Coastal Virginia Offshore Wind (VA).

OSW infrastructure: bottom mounted or floating OSW foundation, power transmission cables, ...


Other: ocean tides, wind, bathymetry, ...


# Technical approach


## **Built on our capabilities**

- A unique ocean hydrodynamics modeling system
- Near-surface meteorology and ocean surface environ.
- Data-driven modeling techniques
- Gaming techniques

• ..





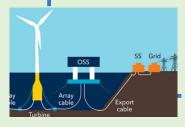


wind

water

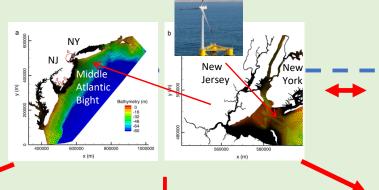
surface

turbine


near-field

(b)

Sample simulation by our CCNY modeling system


# Team/task integration

2. McDonald – satellite monitoring: wind speed/direction, ocean temperature, Chlorophyll, ...



4. Tang/Glisic-- Infrastructure/power transmission cable: forces, damage, vulnerability.

1. Tang /Tzanov – modeling ocean hydrodynamics: flow field, salinity, temperature, . ..



SCIENCE \*\*\*

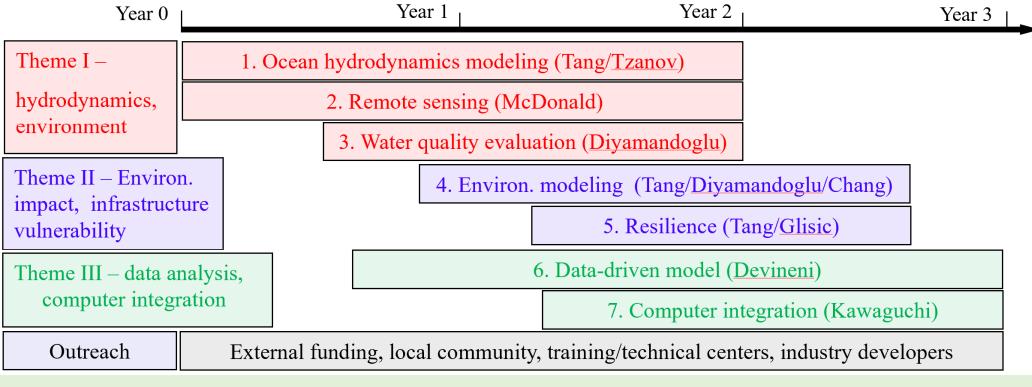
6. Devineni –Data-driven modeling:ML models, data flow



7. Kawaguchi – computer integration: OSW learning interface, a "gamebox"

3. Diyamandoglu-- water quality:hazardous release,OSW structural materials






5. Tang/Chang/Tzanov – environmental modeling: pollutants dispersion, nutrient, phytoplankton, ...

# Expertise

| Theme #                                              | Task #  | Name         | Experience                                                                                                              |
|------------------------------------------------------|---------|--------------|-------------------------------------------------------------------------------------------------------------------------|
| I. Hydrodynamic and environmental processes          | 1, 4, 5 | Tang         | > 30 years on modeling flows in ocean, river, aerospace, etc., developer of the project's hydrodynamics model           |
|                                                      | 2       | McDonald     | > 35 years on remote sensing of the earth system surface processes (ocean and terrestrial environments)                 |
|                                                      | 3, 4    | Diyamandoglu | First-hand experience with water quality analysis, ocean water sampling, and interpretation of water contamination      |
|                                                      | 1, 4    | Tzanov       | Parallel computation, large-scale scientific simulations in various backgrounds including environments                  |
| II. Impacts between OSW farm and the ocean           | 4       | Chang        | 25 years of experience on ocean and OSW energy, resource assessment and environmental impact                            |
|                                                      | 5       | Glisic       | Structure health, sensing technologies, and prognostics and decision-making theory                                      |
| III. Data-driven modeling and computer visualization | 6, 7    | Devineni     | Data-driven modeling, especially climate-hydro-systems for northeast regions, Bayesian models for extreme precipitation |
|                                                      | 7       | Kawaguchi    | Database and transaction processing systems, techniques in game advancement and industry networking                     |

## Milestone and management



Management ---- Meetings (kickoff meeting, technical meeting, annual progress/plan meeting)
Presentation, annual report, publication
Activities for outreach/external funding
A part-time secretary for team members and task coordination.

# Future funding prospects and self-sustaining plan

### **Targeted funding sources**

- NSF, Convergence Program, CoPe (Coastlines and People), Fluid Dynamics program
- National Offshore Wind Research and Development Consortium (NOWRDC)
- New York State Energy Research and Development Authority (NYSERDA)
- DOE, NOAA, .....

## **OSW Preparation**

- A proposal on OSW ocean hydrodynamics, NSF, submitted, April 2022.
- A proposal on OSW energy effects on ecosystems (preliminary proposal selected, full proposal submitted), NOWDRC, in collaboration with CRV team members. May 2022.
- Oral presentation selected, the State of Science Workshop on Wildlife and Offshore Wind Energy, New York, 26-28, July 2022.

**Collaboration** 1) Collin Powell Center, Sch of Education for education to explore awareness of community and society. 2) CCNY/CUNY ecology, CUNY KCC Marine Technology, Stony Brook Offshore Wind Education, NY Offshore Wind Innovation Hub.

**Outreach to industry** Orsted, Equinor, and Aker Offshore Wind, primary OSW industry developers (e.g., Orsted is the builder of the Block Island Wind Farm, the first US OSW farm), for collaboration and projects.

| A remark: given the current crisis of gas price and energy due to the geopolitical conflicts, OSW energy is becoming more necessary and urgent. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Thanks to you all                                                                                                                               |
| Questions?                                                                                                                                      |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |