Wastewater Treatment

Water Resource Recovery

- 1849: The City began systematically to build sewers
- 1890s to early 1900s: First wastewater treatment plants constructed in Brooklyn and Queens
- 1972: Clean Water Act
- 1988: Ocean Dumping Ban ACT

Imagine if New York viewed waste as a valuable resource rather than a problem and used waste to bring sustainable benefits to a range of people. What would that look like?

Team Lead: John Fillos, Department of Civil Engineering

Name	Department	Faculty Expertise (Assets)
Hillary Brown	Architecture	Sustainability, infrastructure planning
Marco J. Castaldi	Chemical Engineering	Thermal processing of organic waste
Jeff Morris	Chemical Engineering/Levich Institute	Rheology, complex fluids, mixture flow
Urs Jans	Chemistry	Chemical analysis of contaminants
Ann (Beth) Wittig	Civil Engineering	Air quality management
Naresh Devineni	Civil Engineering	Data science (environmental focus)
Krish Ramalingam	Civil Engineering	Water resource recovery engineering
Alex Rosenthal	Civil Engineering	Process modeling
Michael Bobker	CUNY Institute of Urban Systems	Energy Management
Mehdi Samimi	Economics & Business	Strategic Management

- Identify and maximize valuable uses
- Expand the possibilities of what can be made
- Properly integrate biosolids recovery and reuse into city infrastructure
- Determine demand, regulations, and public acceptance
- Establish a monitoring program to ensure that biosolids are safe

Sludge rheology and flow

Microscopic structure → Macroscopic properties → Process scale flow optimization

Microscopic images

Macroscopic images

Macroscopic properties

16 µm

→ Process scale fluid mechanics

Strategic Management of Biosolids Valorization Pathways

Business, economic, and social perspectives:

- **Technology comparison:** Drawing on the Triple Bottom Line and ESG frameworks, we analyze the impact of alternatives across different aspects of performance.
- **Technology management**: Treating alternatives as different technologies, we study the life-cycle and the types of innovations involved in the project.
- **Stakeholder management**: Appreciating the crucial role of stakeholders, we develop a stakeholder management strategy.
- Strategy implementation: Using Balanced Scorecard approach, we develop a strategy map to visualize the steps which in turn facilitates the implementation of project.

Path Forward

Advisory Committee

Proof-of-concept Studies

Funding Strategy