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Abstract

We consider a model of long-range first-passage percolation on the d -
dimensional square lattice Zd in which any two distinct vertices x; y 2 Zd

are connected by an edge having exponentially distributed passage time with
mean kx � yk˛Co.1/, where ˛ > 0 is a fixed parameter and k�k is the `1–norm
on Zd . We analyze the asymptotic growth rate of the set Bt , which consists of
all x 2 Zd such that the first-passage time between the origin 0 and x is at most
t as t ! 1. We show that depending on the values of ˛ there are four growth
regimes: (i) instantaneous growth for ˛ < d , (ii) stretched exponential growth
for ˛ 2 .d; 2d/, (iii) superlinear growth for ˛ 2 .2d; 2d C 1/, and finally (iv)
linear growth for ˛ > 2d C 1 like the nearest-neighbor first-passage percolation
model corresponding to ˛ D1. © 2015 Wiley Periodicals, Inc.

1 Introduction
We consider the infinite complete graph on the vertex set Zd , say Gd , and a

nonincreasing positive function r W .0;1/ ! .0;1�. To each edge e of Gd we
assign an independent random weight of the form !e=re, where re is given by the
value of the function r evaluated at the euclidean distance between the endpoints
of the edge e and f!eg’s are i.i.d. nonnegative random variables with common
distribution F . The weight of an edge is interpreted as its passage time. Based
on these passage times, one can define a first-passage metric on Zd , in which
the distance between two vertices is the minimum time required to reach one of
them from the other using any of the paths in Gd joining the two, and study the
asymptotic growth of the associated t -ball (the set of vertices that can be reached
within time t from the origin) as t tends to infinity.

In this paper, we focus on the case in which F is the exponential distribution and
show that the family of stochastic growth models (indexed by the set of nonnega-
tive nonincreasing functions) exhibits a wide variety of growth behavior including
instantaneous growth, exponential growth, any stretched exponential growth (the
t -ball can have diameter and volume of order exp.t�Co.1// for any � 2 .0; 1/),
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any superlinear growth (the t -ball can have diameter of order t�Co.1/ for any
1 < � < 1), and linear growth for different choices of the function r . This phe-
nomenon occurs in a much more general setup when F satisfies a certain moment
condition. In particular, the phase transition between different growth behaviors
depends on the behavior of F near 0 and near infinity; here we will depict this for
the case when F is a positive power of exponential distribution.

This problem bridges two vast areas of study: long-range percolation and
nearest-neighbor first-passage percolation. We briefly discuss both of these areas
in the following two Sections 1.1 and 1.2.

1.1 Long-Range Percolation
During the last few decades there have been numerous research contributions

that have led to a thorough understanding about the existence and type of phase
transitions in different models of statistical mechanics. The simplest among such
models is perhaps the Bernoulli bond percolation model, where one obtains a ran-
dom graph by retaining each of the edges of a ground graph independently with
probability p 2 .0; 1/. The literature on percolation theory is vast, so we men-
tion only a few relevant references here and ask the interested readers to look into
them for further ones. For an introduction and motivation to the subject and for
earlier works, when the ground graph is Zd with nearest-neighbor edges, we rec-
ommend [28]. See also [41, chap. 7] for the treatment of percolation on general
transitive graphs including homogeneous trees. Most of the focus in research re-
lated to percolation on the transitive infinite graphs has been on proving the exis-
tence of phase transition (depending on the appearance of infinite cluster(s)), ana-
lytic and geometric properties of the connected components (see, e.g., [16] for the
properties of connectivity functions), and scaling limits for critical percolation on
Zd (see, e.g., [31, 32, 48, 49]). Percolation has also been considered on large finite
ground graphs such as the complete graph on n vertices (which gives rise to the
famous Erdös-Rényi random graph model), small-world and scale-free networks
(in the context of epidemiology [44, 47]), sparse random graphs (in the context of
robustness of networks [15]), and n-dimensional hypercubes [14].

An extension of the Bernoulli bond percolation model is the long-range perco-
lation (LRP) model, in which each pair of distinct vertices x; y 2 Zd is connected
by an edge with probability px;y � ˇkx � yk�˛Co.1/ (as kx � yk goes to infinity)
for some parameters ˛; ˇ > 0. We denote the associated random subgraph of Gd

by Gd
p , where p D .px;y j x; y 2 Zd /. This model was originally introduced in the

mathematical-physics literature as an example of a model that exhibits phase transi-
tion even in one dimension; it also displays discontinuous transition of percolation
density for ˛ D 2 in one dimension as ˇ varies. We refer the reader to [1,35,45,46]
for more details about these works. Later, Benjamini and Berger [4] proposed LRP
on finite cubic lattices to be models for social networks in connection with the
study of “small world” phenomena [55]; in general, LRP on Zd has gained interest
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as models of graphs with nontrivial volume growth. Most of the research focus in
LRP has been on the following:

(a) scaling properties of the random metric T p. � ; � / on Zd induced by the
LRP random graph Gd

p (see [11]),

(b) the volume growth of the associated balls Bp
t WD fx 2 Zd W T p.0; x/ 6 tg

(see [12, 52]), and

(c) the growth behavior of the diameter Dp
L of the largest connected compo-

nent in Gd
p \ Œ�L;L�

d (the restriction of Gd
p to Œ�L;L�d ).

Combining contributions of numerous authors, it is known (sometimes conjec-
tured but unproved) that for px;y D ˇkx � yk�˛Co.1/ there are five distinct regimes
depending on the relative positions of ˛ and d . The diameter Dp

L

(1) ! d˛=.d � ˛/e for ˛ < d due to [6, exam. 6.1],

(2) � logL= log logL for ˛ D d due to [19],

(3) D .logL/�.˛/Co.1/ for d < ˛ < 2d due to [11, 12],

(4) D L�.ˇ/Co.1/ for pxy D ˇkx � yk�2d (conjectured in [4] for any d > 1;
see [19] for a general upper bound for �.ˇ/ and [22] for existence of �.ˇ/
in d D 1), and

(5) � L for ˛ > 2d (expected [4] for any d > 1; ˇ > 0; see [8] for a lower
bound for all ˇ; the upper bound holds for ˇ large).

Here aL � bL means aL=bL stays away from 0 and infinity with probability
tending to 1 as L!1. Other related areas of research involving LRP models in-
clude study of the simple random walk on Gd

p (e.g., conditions for transience and
recurrence [7], bounds for spectral gap and heat kernel [21], scaling limits to Brow-
nian motion or stable processes) and on its restrictions to the d -dimensional box
Œ�L;L�d (e.g., mixing time [5]). However, understanding these aspects requires
knowledge about much finer structure of the random graph Gd

p .

1.2 First-Passage Percolation
Parallel to the development of the percolation theory, there has always been in-

terest in studying different aspects of shortest paths between two vertices of deter-
ministically or randomly weighted graphs. In this regard, another classical model,
the standard first-passage percolation (FPP) model, has gained a lot of interest in
the mathematical physics literature since its introduction in 1965 [30] and has de-
veloped into an independent field by now. FPP was originally introduced for the
graph Zd with nearest-neighbor edges in the context of flow of fluids through a
random porous medium. We refer to [38, 50] for an account of earlier works and
to [29] for recent results.

In the last two decades, FPP on Zd was used extensively as the basic model in
a variety of fields including competing infections in epidemiology [13, 25, 34] and
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growing interfaces in statistical physics [39]. Also, FPP on other large finite graphs
(e.g., the complete graph [36] and sparse locally treelike random graphs [9,10,53])
have been used for modeling information spreading and flows through networks.

In this model, each edge e of a ground graph is associated with its passage time
(or weight), and the passage times are independent and have common distribu-
tion F supported on Œ0;1�. The passage time of a finite path in the ground graph
is the sum of passage times of the edges present in the path, and the first-passage
time T F .x; y/ between two vertices x and y of the ground graph is the minimum
passage time of a finite path joining them. Note that T F . � ; � / is always a (random)
pseudometric, and it is a random metric (that is called the first-passage metric on
Zd associated with F ) if F has no atom at 0. Moreover, T F . � ; � / can also be
interpreted as the time required to communicate between its two arguments. While
percolation theory deals with issues like connectivity of distant points of some
context-dependent space and properties of connected clusters, the main focus of
research in FPP is to analyze

� the first-passage metric: (a) scaling properties, (b) fluctuations, and (c)
scaling limits, and
� the associated first-passage balls BFt WD fx W T F .0; x/ 6 tg: (a) the time

evolution, (b) existence of asymptotic shape, and (c) analytic and geomet-
ric properties of the limiting shape.

It is well known that in any direction x 2 Zd the first-passage metric T F on Zd

grows linearly with the euclidean metric, i.e., T F .0; nx/=n has a positive and finite
limit as n!1, and T F .0; nx/ has sublinear fluctuation provided F.0/ < pc.d/
(the critical bond percolation probability for Zd with nearest-neighbor edges). In
addition, under a suitable moment condition onF (see [20]), BFt grows linearly in t
and has a deterministic limiting shape, i.e., BFt � .tB/ \ Zd as t !1 for some
nonrandom compact set B � Rd . Although many estimates and techniques are
available to analyze the distribution of T F .0; nx/, its distributional convergence as
n!1 is almost completely open.

The behavior of FPP on general ground graphs is not universal. There are large
finite ground graphs such that, even with mean 1, exponentially distributed edge-
weights, the ratio of the first-passage metric and the graph metric evaluated at a
typical pair of vertices of the graph decays to 0 rapidly (in the case of a com-
plete graph [36]) or slowly (in the case of a family of sparse locally treelike ran-
dom graphs [10]) as the size of the graph grows to infinity. Here we consider a
long-range version of the FPP model on the d -dimensional lattice and analyze the
scaling properties of the associated first-passage metric.

1.3 Appearance of Long-Range First-Passage Percolation
Although FPP was originally introduced and extensively studied in the nearest-

neighbor settings, the long-range version of it (which we denote by LRFPP) nat-
urally appears in many applications. For instance, theoretical biologists have
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used certain versions of LRFPP for modeling biological invasion of species
[17, 24, 42, 51]. Along with many other factors they use dispersal kernels r.�/ with
heavy tails as part of their models for dispersal mechanisms of biological objects
(such as seeds, pollen, fungi, etc.). However, most of their conclusions are based on
simulations in two-dimensional grid and nonrigorous heuristics. In [17], followed
by [42], the authors recognized two phases of spatiotemporal behavior, which they
call long-distance dispersal and short-distance dispersal, based on whether the sec-
ond moment of the dispersal kernel is infinite or finite. They argue that under finite
second-moment conditions (short-distance dispersal regime) the growth behavior
of the region reachable within time t is same as that in nearest-neighbor (or finite-
range) FPP. On the other hand, the authors in [24] recognized one additional phase,
which they call medium-distance dispersal, but they didn’t specify where the tran-
sitions between different phases occur. As we will prove here, the situation is much
more delicate, and there are at least four distinct phases (with three critical points
in between) depending on the heavy tail index of the dispersal kernel.

Aldous [2] considered communication of continuously arriving information
through a finite agent network in a certain game-theoretic setup. In one of the
cases, where the network topology is a two-dimensional discrete torus and the
communication cost between any two agents is a nondecreasing function of the
euclidean distance between them, the main technical tool to understand the time
evolution of the fraction of informed agents is the analysis of the LRFPP model,
which we propose here, on a large two-dimensional discrete torus. Aldous pro-
posed a simplified version of this LRFPP model, which he named short-long FPP,
in which agent network topology is a discrete torus, each pair of nearest-neighbor
agents communicate at rate 1, and all other pairs of agents communicate at a rate
that depends only on the size of the torus regardless of the distance between the
agents. The continuous analogue of the short-long FPP model has been analyzed
rigorously on a (two-dimensional) real torus [18] and on finite Riemannian man-
ifolds [3]. Our model is, in a sense, a generalization of the nearest-neighbor FPP
and LRP.

In some sense, ours is not the first attempt to analyze LRFPP rigorously. Molli-
son [43] considered similar models in the context of spatial propagation of simple
epidemics in one dimension. He proved linear growth in one dimension when the
dispersal kernel has a heavy tail index higher than 3 (D 2 � 1C 1).

In the physics literature, long-range interactions for epidemic models have been
proposed as more realistic descriptions in different nonequilibrium phenomena
compared with their short-range counterparts. Grassberger [27] introduced a vari-
ation of the epidemic processes with infection probability distributions decaying
with the distance as a power law. The model was analyzed nonrigorously in [37]
using field-theoretic calculations and in [33] using numerical simulations. Both
the articles predict ˛ D d C 2 as the phase transition point to get short-range be-
havior with linear growth, which is false in dimension 2 and above by our result.
The main issue is with large but finite cutoff, where one really gets ˛ D d C 2 as
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the phase transition point, with the diffusion coefficient of the infection probability
distributions changing from infinite to finite.

Here we will address the general case in all dimensions.

1.4 Our Model
In this paper, we consider a long-range first-passage percolation (LRFPP) model

on Zd for d > 1. We will use k�k to denote the `1-norm on Zd . Let E WD fhxyi W
x; y 2 Zd ; x ¤ yg be the edge set for the infinite complete graph on Zd . The
length of an edge e D hxyi 2 E is taken to be kek WD kx � yk. Since all p̀-norms,
p 2 Œ1;1�; are equivalent, one can use any one of them; however, we will stick to
the `1-norm for convenience.

For a given nonnegative communication rate function r.�/ on RC, r.kek/ will
be the rate of communication through the edge e. To each e 2 E we also assign
an independent random weight !e, where f!ege2E are i.i.d. with common distri-
bution F supported on Œ0;1�. The random variable

We WD
!e

r.kek/

represents the amount of time needed (i.e., passage time) to pass through the
edge e, and for a finite E -path � (consisting of edges from E ) we define the corre-
sponding passage time for � to be

(1.1) W� WD
X
e2�

We D
X
e2�

!e

r.kek/
:

Based on theseW� , the first-passage time T .x; y/ to reach x 2 Zd from y 2 Zd

associated with the communication rate function r is defined to be the minimum
passage time over all finite E -paths from x to y. More precisely,

(1.2) T .x; y/ WD inffW� j � 2 Px;yg for x; y 2 Zd ;

where Px;y is the set of all finite E -paths from x to y.
Clearly, this LRFPP model is a stochastic growth model and T . � ; � / is a random

metric (assuming F has no atom at 0) on Zd , which we will refer to as the LRFPP
metric. The first natural question related to this metric is how does the associated
LRFPP ball of radius t ,

Bt WD fx 2 Zd j T .0; x/ 6 tg;

and its diameter (viewing Bt as a subset of Zd )

Dt WD supfkx � yk j x; y 2 Btg; t > 0:

grow as t tends to infinity. We will address these questions for certain cases of r.�/
and F .

We will primarily be concerned with the case when r.k/ D k�˛L.k/ for some
˛ > 0 and for some slowly varying function L, and F is an exponential distri-
bution with mean 1 or its positive power. Note that when “˛ D 1” we get back
the standard (nearest-neighbor) FPP model with i.i.d. edge weights, which is also
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known as Richardson’s model when the edge weights have mean 1 exponential
distribution.

Remark 1.1. Our approach of constructing the LRFPP model naturally incorporates
the monotonicity property in r.�/ in the sense that if r.�/ and r 0.�/ are two communi-
cation rate functions such that r.k/ > r 0.k/ for all k > 1, then T .x; y/ 6 T 0.x; y/
for all x and y, and Bt � B0t and Dt > D0t , where T 0. � ; � /;B0t ;D0t correspond to
the rate function r 0.

1.5 LRFPP as a Long-Distance Dispersal Model
When � WD

P
x2Zd r.kxk/ < 1, the above LRFPP model can also be viewed

as a long-distance dispersal model in the context of information propagation, infec-
tion spreading (susceptible-infected/SI epidemic model), and biological invasion of
species. Note that for r.k/ D k�˛, we have � <1 if and only if ˛ > d . To fix the
idea, suppose there is an agent at every vertex of Zd and the agents are either oc-
cupied (informed/infected) or vacant (uninformed/healthy). Occupied sites never
become vacant. Initially the agent at the origin is occupied at time 0. Whenever
an agent becomes occupied, it starts communicating at rate �. When the agent at
x communicates, it chooses a site y independently with probability r.kx � yk/=�
and makes it occupied. All agents act independently of each other.

Let yBt denote the set of occupied vertices at time t . Clearly yB0 D f0g and it is
easy to see that if F is exponential with mean 1, then

.Bt W t > 0/
d
D . yBt W t > 0/:

Thus, our results can also be interpreted as growth results for the associated long-
range dispersal models.

1.6 Main Results
Recall that T . � ; � / and Bt denote the (random) LRFPP metric on Zd and the

corresponding t -ball associated with communication rate function r.�/ and expo-
nentially distributed edge weights (passage times) for the complete graph on Zd .
Throughout the article r.�/ is a nonincreasing function, and for convenience we
will assume that it has the form

(1.3) r.k/ D k�˛L.k/; k > 1;

for some ˛ 2 Œ0;1/ and for some slowly varying (at infinity) function L.�/ satis-
fying L.1/ D 1. Recall that a function L.�/ is slowly varying at infinity if for any
a 2 .0;1/ we have limx!1L.ax/=L.x/ D 1.

The first natural question is whether all vertices become occupied (i.e., perco-
lation occurs) at some finite time or not starting from a single occupied vertex (or
equivalently from finitely many occupied vertices) at time 0. Even if percolation
does not occur at some finite time, it is not at all obvious whether jBt j <1 a.s. for
any t <1 or not.
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Hereafter jAj denotes the size for a set A. Our first result shows that Bt covers
the entire Zd instantaneously (instantaneous percolation regime) when the com-
munication rate function r.�/ satisfies (1.3) for any ˛ < d , whereas jBt j < 1
a.s. for any t <1 when (1.3) holds for any ˛ > d .

THEOREM 1.2 (Instantaneous Percolation Regime). For the communication rate
function r.�/, define A to be the integral A WD

R1
1 xd�1r.x/dx.

(i) If A D 1, then P .jBt j D 1/ D 1 for any t > 0. In particular, if r.�/
satisfies (1.3) for some ˛ < d , then for any t > 0,

P .Bt D Zd / D 1:

(ii) If A < 1, then there exists a constant c > 0 depending only on A and d
such that

E.jBt j/ 6 ect for all t > 0.

So for ˛ > d the size of the occupied set grows at a certain finite rate depending
on ˛ and d . Here we show that there are many different growth regions. The first is
the exponential growth regime, which is observed when (1.3) holds with ˛ D d and
any L.�/ satisfying some additional restrictions. Note that Theorem 1.2(ii) ensures
that if the size of Bt is finite for any t <1, then it can grow at most exponentially
fast.

THEOREM 1.3 (Exponential Growth). Let the communication rate function r.�/ for
the LRFPP model on the complete graph with vertex set Zd be nonnegative and
nonincreasing, and satisfy (1.3) with ˛ D d and some L.�/ having the properties

(1.4)
Z 1
1

L.x/

x
dx <1 and

Z 1
1

� logL.x/
x.log x/2

dx <1:

Then there exist constants 0 < c < C <1 depending on L.�/ such that

lim
kxk!1

P

�
c 6

T .0; x/
logkxk

6 C

�
D 1:

Moreover, there is a constant a > 0 such that EjBt j > eat for any t > 0.

Between the two properties of L.�/ mentioned in (1.4), the first one ensures that
the growth of the LRFPP ball is finite at any finite time, whereas the second one
enables us to construct a path between any two vertices of Zd , which are located
at large `1-distance away from each other, such that the passage time of the path
is logarithmic in the euclidean distance between them. The second condition of
(1.4) arises quite naturally and is somewhat optimal. Note that the same condition
also arises in case of the LRP model on Zd corresponding to exponential growth
(see [52]).

Next, we focus on the stretched exponential growth regime, which is observed
when (1.3) holds for some ˛ 2 .d; 2d/.
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THEOREM 1.4 (Stretched Exponential Growth). Let the communication rate func-
tion r.�/ for the LRFPP model on the complete graph with vertex set Zd be non-
negative and nonincreasing, and satisfy (1.3) for some ˛ 2 .d; 2d/. Define

�.˛; d/ WD
log 2

log.2d=˛/
2 .1;1/:

Then, for any " > 0, we have

(i) lim
kxk!1

P

�
�.˛; d/ � " 6

logT .0; x/
log logkxk

6 �.˛; d/C "

�
D 1, and

(ii) lim
t!1

P

�ˇ̌̌̌
log logDt

log t
�

1

�.˛; d/

ˇ̌̌̌
6 "

�
D 1.

Note that as ˛ increases from d to 2d , the value of 1=�.˛; d/ strictly decreases
from 1 to 0. Thus, the family of the LRFPP models, which satisfies the hypothesis
of Theorem 1.4, exhibits all possible “stretched exponential” growth behavior.

This together with the monotonicity property of the LRFPP model (see Remark
1.1) indicates that when ˛ > 2d , the growth rate of the occupied set is slower than
any stretched exponential. Now we present some bounds for the LRFPP metric and
diameter of the associated LRFPP ball when (1.3) holds with ˛ D 2d and L � 1.
These bounds capture the order of magnitude for the growth of the LRFPP ball at
this critical value of ˛.

THEOREM 1.5 (Log Correction for ˛ D 2d ). Let r.k/ D k�2d , k > 1, be the
communication rate function for the LRFPP model on the complete graph with
vertex set Zd . There exist constants 0 < c < C < 1 depending only on d such
that

(1) lim
kxk!1

P

�
c 6

logT .0; x/p
logkxk

6 C

�
D 1, and

(2) lim
t!1

P

�
C�2 6

logDt
.log t /2

6 c�2
�
D 1:

Next, we show that any communication rate function satisfying (1.3) for some
˛ 2 .2d; 2d C 1/ corresponds to the superlinear growth regime, in which the
occupied set of the LRFPP model grows faster than linear at a certain polynomial
rate.

THEOREM 1.6 (Superlinear Growth). Let the communication rate function r.�/ for
the LRFPP model on the complete graph with vertex set Zd be nonnegative and
nonincreasing, and satisfy (1.3) for some ˛ 2 .2d; 2d C 1/. Define

�.˛; d/ WD ˛ � 2d:

Then, for any " > 0,

(1) lim
kxk!1

P

�
�.˛; d/ � " 6

logT .0; x/
logkxk

6 �.˛; d/C "

�
D 1, and
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(2) lim
t!1

P

�ˇ̌̌̌
logDt
log t

� 1=�.˛; d/

ˇ̌̌̌
6 "

�
D 1.

Note that as ˛ increases from 2d to 2d C 1, the value of 1=�.˛; d/ strictly
decreases from infinity to 1. Thus, the family of the LRFPP models, which satisfies
the hypotheses of Theorem 1.6 exhibits all possible superlinear growth behavior.

Finally, we show that any communication rate function satisfying (1.3) for some
˛ > 2d C 1 corresponds to a linear growth regime, in which the growth of the oc-
cupied set in the LRFPP model is similar to that of the standard (nearest-neighbor)
first-passage percolation model.

THEOREM 1.7 (Linear Growth). Let the communication rate function r.�/ for the
LRFPP model on the complete graph with vertex set Zd be nonnegative and non-
increasing, and satisfy (1.3) for some ˛ > 2d C 1. Then, for any x 2 Zd n f0g
there exists �.x/ > 0 such that for any " > 0,

lim
n!1

P
�
.1 � "/�.x/ 6 n�1T .0; nx/ 6 .1C "/�.x/

�
D 1:

Moreover, �.�/ can be extended to a function � W Rd 7! Œ0;1/, for which �.y/ ¤ 0
whenever y ¤ 0 and

P
�
fy 2 Rd W �.y/ 6 1 � "g � t�1Bt � fy 2 Rd W �.y/ 6 1C "g

for all sufficiently large t
�
D 1

for all " > 0.

Note that when the communication rate function r.�/ satisfies (1.3) with ˛ D
2d C 1, then comparing the growth of T .0; x/ with other values of ˛ and using
the monotonicity property of the LRFPP model (see Remark 1.1), it is easy to see
that T .0; x/ grows like kxk1Co.1/ as kxk ! 1. However, our current techniques
do not yield the exact growth rate in this case. Based on the results from [26],
we believe the condition

R1
1

�R1
t xd r.x/dx

�1=d
dt < 1 is sufficient and the

condition
R1
1 x2d r.x/dx <1 is necessary to ensure linear growth for the LRFPP

metric with communication rate function r.�/. However, here we have not pursued
the problem of finding necessary and sufficient conditions that will imply linear
growth.

Remark 1.8. If the communication rate function r.�/ satisfies

lim
k!1

log r.k/
log k

D �1;

then combining the monotonicity property of the LRFPP model (see Remark 1.1)
together with Proposition 8.2 below, it is easy to see that the conclusion of Propo-
sition 8.2, and hence that of Theorem 1.7, also hold for r.�/.

Remark 1.9. Our proofs for the above theorems can be extended to the case where
the common distribution of f!ege2E is a positive power 
 of the exponential dis-
tribution. In that case, similar phase transitions occur for the associated LRFPP
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metric, but the phase transition points are d
 , 2d
 , and 2d
 C 1 instead of d ,
2d , and 2d C 1, respectively. Also, the corresponding growth exponents for the
stretched exponential and superlinear growth regimes are �.˛; d
/ and �.˛; d
/.

1.7 Heuristics Behind the Thresholds
In this section, we provide an intuitive explanation for the existence of differ-

ent phase transition points. Comparing with the growth behavior at ˛ D 1 (the
nearest-neighbor FPP model), it is easy to see that the growth of the LRFPP balls
is always linear or faster than linear. For simplicity, assume that r.k/ D k�˛,
k > 1, for some ˛ > 0. Note that when ˛ < d ,

P
x2Zd r.kxk/ D 1 and hence

minx2Zd Wh0;xi D 0 a.s. Thus jBt j D 1 a.s. for any t > 0.
Now suppose that the growth of the LRFPP ball is polynomial for some ˛ with

growth exponent ˇ D ˇ˛ in the sense that the euclidean diameter of the occupied
set Bt D B.˛/t at time t is of order tˇ . Clearly we must have ˇ > 1. Then,
the size of Bt at time t is of order tdˇ , so the minimum weight among all edges
that have one end in Bt and have length more than ` is exponential with rate ap-
proximately of order tdˇ`�.˛�d/. Now note that if ` � tˇ , then this minimum
weight edge must have weight more than O.t/ with high probability, otherwise
the growth of the LRFPP ball will be faster than O.tˇ /. Thus, using the fact that
P .X > t / D e��t when X is exponentially distributed with rate �, we must have
t �tdˇ �t�.ˇC"/.˛�d/ D o.1/ as t !1 for any " > 0, which implies ˇ.˛�2d/ > 1.

Clearly for ˛ 6 2d , the above heuristic calculation does not hold (as ˛ � 2d 6
0), which implies that the growth is faster than any polynomial. In fact, comparing
the growth with an LRP model, in which an edge e 2 E is present with probability
1 � exp.�kek�˛/, it is easy to see [11] that the growth is at least stretched expo-
nential. Thus, one expects a transition from stretched exponential to polynomial
growth as ˛ changes from smaller than 2d to larger than 2d .

Now, for ˛ 2 .2d; 2d C 1� we have .˛ � 2d/�1 > 1, so the growth exponent
ˇ for the diameter of the LRFPP ball is bigger than .˛ � 2d/�1. Also, for ˇ WD
.˛ � 2d/�1 intuitively the growth of the diameter cannot be faster than tˇC" for
any " > 0, as eventually by time t all “usable” edges will have euclidean length
� tˇ . Thus, for ˛ 2 .2d; 2d C 1� the growth exponent for the diameter of the
LRFPP ball must be .˛ � 2d/�1.

Now note that .˛ � 2d/�1 D 1 when ˛ D 2d C 1, so by monotonicity one
expects the growth exponent for the diameter to be 6 1 when ˛ > 2d C 1. So,
the linear growth dominates in this case. Moreover, it is easy to see that for any
` � t .dC1/=.˛�d/ the minimum weight among all edges that have one end in Bt
(which has linear growth) and have euclidean length ` is larger thanO.t/with high
probability, and thus up to time O.t/ none of the edges having euclidean length
more thanO.t .dC1/=.˛�d//will be used. Moreover, � WD .dC1/=.˛�d/ 2 .0; 1/
when ˛ > 2d C 1. This idea will play a crucial role in proving linear growth. If
we break the lattice into boxes of length n� and if the optimal path from 0 to nx
cannot jump over boxes, then we have a nearest-neighbor path over the boxes, and
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if the path spends ‚.n� / time in most of the boxes, the total time is ‚.n/. We will
use a renormalization technique to use this idea in proving the linear growth.

1.8 Discussion and Open Problems
As alluded to earlier, the long-range percolation model on Zd is not well under-

stood when the associated LRP graph metric is expected to scale polynomially with
the euclidean metric. The only available result in this context [22] is the existence
of a scaling exponent in one dimension ensuring polynomial scaling of the LRP
metric. Also, the linear growth of the LRP metric, when relevant, is not fully es-
tablished. In this article, we have been able to elucidate those two growth regimes
(polynomial and linear) in the case of a class of a long-range first-passage percola-
tion model, which can be thought of as a continuous analogue of the LRP model,
in addition to identifying and analyzing other growth regimes for it. For our model,
we have proved linear growth for the associated LRFPP metric along with a shape
theorem for the growth set in the case of almost all candidate communication rate
functions. We have also pinned down the growth exponent for all communication
rate functions that correspond to polynomial growth for the occupied set.

In our LRFPP model, all edge weights are exponentially distributed (or are some
power of an exponentially distributed random variable). So, a natural question
arises: what happens if we replace an exponential distribution by an arbitrary dis-
tribution supported on Œ0;1/. In many places in this article we have used prop-
erties of the exponential distribution to facilitate our calculations. However, the
crucial fact that will imply a similar phase transition is that the distribution of !e’s
satisfy P .!e 6 x/ D ‚.x/ for x � 1. In general, when P .!e 6 x/ D ‚.xs/ for
x � 1 and for some real number s > 0, the phase transition points will be d=s,
2d=s, 2d=sC1, respectively, under appropriate moment conditions. In a sense, the
“effective” dimension becomes d=s instead of d in that case. Note that when .!e/s

has exponential distribution with rate 1, it is easy to see that P .!e 6 x/ � xs , and
one can go through almost all the computations in this article to see the above phe-
nomenon (see Remark 1.9). The general case will be dealt with in a forthcoming
article.

Even for the model that we consider here, there are many fascinating phenomena
that we have not analyzed yet. We mention some of them below. See Figures 1.1,
1.2, and 1.3 for simulated pictures of the random growth set in two dimensions.

(a) What is the limiting distribution of T .0; nx/ as n!1when ˛ 2 .d; 2d/?
Heuristically the limit should be Gaussian at least when ˛ is close to 2d .

(b) In the stretched exponential growth regime ˛ 2 .d; 2d/, is it possible to
formulate and analyze the boundary behavior of the growth set?

(c) For ˛ 2 .2d; 2d C 1/, one should have a random “shape theorem.” More
precisely, for any fixed direction x 2 Rd the ratio T .0; bnxc/=n˛�2d
should converge to a random variable.
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FIGURE 1.1. Simulated growth for r.k/ D k�3:5 in d D 2 up to time
t D 24 at volume 25 421. Different colors show the growth pattern at six
equispaced time points.

FIGURE 1.2. Simulated growth for r.k/ D k�4 (left) and r.k/ D k�4:5

(right) up to time t D 48 and t D 60 with volume 46 113 and 19 635,
respectively. Different colors show the growth pattern at six equispaced
time points.

(d) How does T .0; nx/ grow as n!1 when r.k/ D k�.2dC1/? We believe
the answer is ‚.n.logn/�� / for some � > 0.

(e) In the linear growth regime, does the fluctuation of the first-passage time
have a phase transition too or is the fluctuation universal?

(f) From simulation results, it is obvious that for ˛ > 2d there is a single large
connected (in Zd ) cluster for the growth set; however, for ˛ < 2d there are
many of them. Is it possible to analyze the number of “big” components in
the growth set Bt?
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FIGURE 1.3. Simulated growth for r.k/ D k�5 (left) and r.k/ D k�5:5

(right) up to time t D 90, with volume 19 534 and 12 911, respectively.
Different colors show the growth pattern at six equispaced time points.

1.9 Organization of the Paper
The paper is organized as follows. In Section 2 we set up our notation and prove

the technical estimates needed later in the proofs. Section 3 contains the proof
of Theorem 1.2 about the transition from instantaneous growth to subexponential
growth. In Sections 4 and 5 we develop a multiscale analysis and self-bounding
recursion for the expected volume that will be used crucially to find appropriate
lower and upper bounds for the growth set at time t . Finally, we prove the main
theorems: Theorems 1.4 and 1.5 (Section 6), Theorem 1.6 (Section 7), and Theo-
rem 1.7 (Section 8).

2 Notation and Estimates
Recall that Gd D .Zd ;E / denotes the infinite complete graph on the vertex set

Zd and edge set E WD fhxyi W x; y 2 Zd ; x ¤ yg. Also f!ege2E is a collection of
i.i.d. exponentially distributed random variables with mean 1, and the passage time
for the edge e D hxyi 2 E is We D !e=r.kek/, where kek D kx � yk. Recall that
r satisfies (1.3); i.e., r is nonincreasing and is of the form

r.k/ D k�˛L.k/; k > 1;

for some ˛ > 0 and a slowly varying function L.�/ with L.1/ D 1.
For a finite E -path � , the passage time is defined as W� WD

P
e2� We, and the

first-passage metric on Zd is

T .x; y/ WD inf
�2Px;y

W� where Px;y WD

fhx0x1 � � � xki W x0 D x; xk D y; xi ¤ xi�1; i D 1; 2; : : : ; kg:

Bt denotes the ball of radius t around the origin for the random metric T . � ; � /,
and Dt denotes the diameter of that ball.

The following tail estimate for sums of exponential random variables will be
useful in our analysis.
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LEMMA 2.1. Let X1; X2; : : : be i.i.d. exponential random variables with mean 1.
Let �1; �2; : : : be a sequence of positive real numbers. Then for any t > 0 and
k > 1 we have

tkQk
iD1.k C �i t /

kY
iD1

�i 6 P

� kX
iD1

Xi

�i
6 t

�
6
�
et

k

�k kY
iD1

�i :

Moreover, if �i > � for all i and ƒ WD
Pk
iD1 1=�i , then for any t > ƒ we have

P

� kX
iD1

Xi

�i
> t

�
6 exp

�
�
�.t �ƒ/2

2t

�
:

PROOF. Using the exponential Markov inequality and the fact that

(2.1) E.e��Xi / D
1

1C �
for � > �1

we have

P

� kX
iD1

Xi

�i
6 t

�
6 e�t

kY
iD1

�
1C

�

�i

��1
6 e�t

kY
iD1

�i

�

for all � > 0. Taking � D k=t we get the required upper bound for the lower tail
of
Pk
iD1Xi=�i . For the lower bound we use independent events. Clearly

P

� kX
iD1

Xi

�i
6 t

�
> P .Xi 6 �i t=k for all i/

D

kY
iD1

.1 � e��i t=k/ >
kY
iD1

�i t

k C �i t
;

where the last inequality follows from the fact that 1 � e�x > x=.1 C x/ for all
x > 0.

For the upper tail bound we use the Markov inequality and (2.1) to obtain

P

� kX
iD1

Xi

�i
> t

�
6 e���t

kY
iD1

�
1 �

��

�i

��1
for all � 2 Œ0; 1/. Also using the monotonicity of the function � log.1 � x/=x, we
have

log P

� kX
iD1

Xi

�i
> t

�
6 ���t �

kX
iD1

�

�i
log.1 � �/ D ��.� t Cƒ log.1 � �//:
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Taking � D 1 �ƒ=t and using the fact that 1 � x C x log x > .1 � x/2=2 for all
x 2 Œ0; 1�, we finally have

log P

� kX
iD1

Xi

�i
> t

�
6 �

�t.1 �ƒ=t/2

2
D �

�.t �ƒ/2

2t
:

This completes the proof. �

LEMMA 2.2. Let X1; X2; : : : be i.i.d. exponential random variables with mean
1. Let �1; �2; : : : be a sequence of positive real numbers. Then for any t > 0,
k > m > 0, we have

P

� kX
iD1

Xi

�i
6 t;

mX
iD1

Xi

�i
C

2k�mX
iDkC1

Xi

�i
6 t

�
6

.et/2k�m

.k �m/2k�2mmm

2k�mY
iD1

�i :

PROOF OF LEMMA 2.2. It is easy to see that

P

� kX
iD1

Xi

�i
6 t;

mX
iD1

Xi

�i
C

2k�mX
iDkC1

Xi

�i
6 t

�

6 P

� mX
iD1

Xi

�i
6 t;

2k�mX
iDkC1

Xi

�i
6 t;

kX
iDmC1

Xi

�i
6 t

�

D P

� mX
iD1

Xi

�i
6 t

�
P

� 2k�mX
iDkC1

Xi

�i
6 t

�
P

� kX
iDmC1

Xi

�i
6 t

�
:

Applying Lemma 2.1 to bound each of the above terms, we get the desired inequal-
ity. �

The inequalities in Lemmas 2.1 and 2.2 clearly suggest that the behavior of the
tail probabilities for the passage time of a finite E -path � depends on

Q
e2� r.kek/

(which corresponds to the term
Q
i �i in the two lemmas). So analyzing this quan-

tity for a certain collection of paths is important in order to understand the growth
of the first-passage metric. Keeping that in mind, we now estimate the following:

For any positive integer k > 1 and x; y 2 Zd , let

(2.2) Pk.x; y/ be the set of all finite E -paths of length
(no. of edges) k from x to y.

We define

(2.3) S r
k .x; y/ WD

X
�2Pk.x;y/

Y
e2�

r.kek/:

In order to estimate the growth of S r
k

, first we need the following bound:
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A1 A2

Ac
3

0 x

FIGURE 2.1. Decomposition of Zd n f0; xg into Ai , i D 1; 2; 3.

LEMMA 2.3. Let r.�/; q.�/ be nonincreasing functions on N ! .0;1/ satisfying

(2.4) sup
x>1

xjr.x C 1/ � r.x/j

r.x/
6 c; sup

x>1

xjq.x C 1/ � q.x/j

q.x/
6 c;

for some constant c > 0. Then, for any x 2 Zd we haveX
y¤0;x

r.kx � yk/q.kyk/

6 a

�
r.kxk/

Z kxk
1

xd�1q.x/dx C q.kxk/
Z kxk
1

xd�1r.x/dx

C

Z 1
kxk

xd�1r.x/q.x/dx

�
for some constant a <1 depending only on c and d .

PROOF. Let m WD 1
4kxk2. Here kxk2 D .

P
x2i /

1=2 is the `2-norm and
B2.x; r/ D fy W kx � yk2 6 tg is the `2-ball of radius t centered at x (see Fig-
ure 2.1). Note that d�1=2kxk 6 kxk2 6 kxk. Define the sets

A1 WD B2.0; 3m/ n f0g; A2 WD B2.x; 3m/ n fxg; and A3 WD B2.x=2;
p
5m/c :

It is easy to see that
S3
iD1Ai D Zd n f0; xg, as the distance between x=2 and

any vertex outside A1 [A2 is at least
p
.3=4/2 � .1=2/2kxk2 D

p
5m. Therefore

we have X
y¤0;x

r.kx � yk/q.kyk/ 6
3X
iD1

X
y2Ai

r.kx � yk/q.kyk/:

Now y 2 A1 implies kx � yk > kx � yk2 > m. Moreover, the conditions (2.4)
imply that supk>1 r.ak/=r.k/ < 1 and supk>1 q.ak/=q.k/ < 1 for all a > 0.
In particular, r.kxk/ and r.kxk2/ are equivalent up to constant multiplication.

Thus we haveX
y2A1

r.kx � yk/q.kyk/ 6 r.m/

3mX
iD1

id�1q.i/ 6 ar.kxk/
Z kxk
1

xd�1q.x/dx
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for some constant a > 0. Similarly, we haveX
y2A2

r.kx � yk/q.kyk/ 6 aq.kxk/
Z kxk
1

xd�1r.x/dx:

Finally, using the triangle inequality we have

kyk2 > ky � x=2k2 � 2m and kx � yk2 > ky � x=2k2 � 2m;
and thusX

y2A3

r.kx � yk/q.kyk/ 6 a0
X
s>5m2

sd=2�1r.
p
s � 2m/q.

p
s � 2m/

6 a00
Z 1
kxk

xd�1r.x/q.x/dx

for some constant a00. �

COROLLARY 2.4. For ˛; ˇ > 0 there exists constant c > 0 depending on ˛, ˇ,
and d such that for any x 2 Zd

(a)
P

y¤0;xkyk
�ˇ
kx � yk�˛ 6 ckxkd�ˇ�˛ if 0 < ˛; ˇ < d and ˛ C ˇ > d ,

(b)
P

y¤0;xkyk
�˛
kx � yk�˛ 6 ckxk�˛ if ˛ > d .

We now use Lemma 2.3 to estimate the growth of S r
k

. We use S ˛
k

when r.k/ D
k�˛.

LEMMA 2.5. Let r.�/ satisfy 1.3. For any fixed k > 1 and any x; y 2 Zd ,

(a) ˛ 6 .k � 1/d=k implies S ˛
k
.x; y/ D1,

(b) .k � 1/d=k < ˛ < d implies

ak�1kx � yk.k�1/d�k˛ 6 S ˛
k .x; y/ 6 bk�1kx � yk.k�1/d�k˛

for some constant a; b > 0 depending only on ˛ and d , and

(c) A WD
R1
1 xd�1r.x/dx <1 implies that

ak�1r.kx � yk/ 6 S r
k .x; y/ 6 bk�1r.kx � yk/

for some constant a; b > 0 depending only on A and d .

PROOF OF LEMMA 2.5. Let z be a lattice point closest to x=2. Define `i WD
2ikxk for i > 0 and consider the open annulus Ai around z of inradius `i and
outradius 2`i . Clearly jAi j > cd`

d
i for some constant cd > 0.

Let Pi , i > 0, be the set of all paths from 0 to x with k edges where all the
vertices on the path, except the first and last one, are in Ai . Clearly the Pi ’s
are disjoint and kek 6 4`i for every edge e belonging to some � 2 Pi , so the
contribution of Pi in S ˛

k
.0; x/ is > ak`

d.k�1/�˛k
i for some constant a > 0.

(a) For ˛ 6 .k � 1/d=k, the index of `i is nonnegative, so summing over i we
get S ˛

k
.0; x/ D1. This proves (a).
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(b) Note that we have already proved that

S ˛
k .0; x/ >

X
�2P0

Y
e2�

kek�˛ > akkxk.k�1/d�k˛:

To show that this is the correct order for ˛ 2 ..1�1=k/d; d/, we will use induction
to show that

S ˛
L .0; x/ 6 cL�11 kxk.L�1/d�L˛ for all x 2 Zd(2.5)

and for any 1 6 L < d=.d � ˛/,

for some positive constant c1. ForL D 1, it is trivial to see that S ˛
1 .0; x/ D kxk

�˛

and (2.5) holds. Assuming (2.5) holds for L D l and l C 1 < d=.d � ˛/, we have

S ˛
lC1.0; x/ 6

X
y¤0;x

S ˛
l .0; y/kx � yk�˛ 6 cl�11

X
y¤0;x

kyk.l�1/d�l˛kx � yk�˛:

So applying Corollary 2.4 with ˇ D l˛ � .l � 1/d , we have

S ˛
lC1.0; x/ 6 cl1kxk

d�˛�ˇ
D cl1kxk

ld�.lC1/˛;

and thus (2.5) holds for L D l C 1. This proves (b).
(c) Now, we move to the proof of the case when A WD

R1
1 xd�1r.x/dx < 1.

To see the lower bound for S r
k
.0; x/, it is enough to consider a path that starting

from 0 moves among the set fy W kyk D 1g and finally jumps to x at the kth step.
For the upper bound, we follow the induction argument that leads to the proof of
(2.5) to prove

S r
k .0; x/ 6 ck�1r.kxk/ for all x 2 Zd for any k > 1,

where c is as in Corollary 2.4(b). The main step is to bound
P

y r.kyk/r.kx � yk/,
for which we use Corollary 2.4(b). �

Lemma 2.5 together with Lemma 2.1 gives an estimate for the first-passage time
when ˛ > d .

LEMMA 2.6. Assume A WD
R1
1 xd�1r.x/dx < 1. There exists a constant c D

c.A; d/ > 0 such that for any x 2 Zd and t > 0,

P .T .0; x/ 6 t / 6 .ect � 1/r.kxk/:

PROOF. For Pk.0; x/ as defined in (2.2), we use the union bound to have

P .T .0; x/ 6 t / 6
1X
kD1

X
�2Pk.0;x/

P .W� 6 t /:
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Applying Lemma 2.1 to bound the summands of the above display and recalling
the definition of S r

k
from (2.3), we have

P .T .0; x/ 6 t / 6
1X
kD1

�
et

k

�k X
�2Pk.0;x/

Y
e2�

r.kek/

D

1X
kD1

�
et

k

�k
S r
k .0; x/ 6

1X
kD1

�
ebt

k

�k
r.kxk/

for some constant b D b.A; d/ > 0, where the last inequality follows by applying
Lemma 2.5(c). As

P1
kD1.ebt=k/

k 6 eebt � 1, the rest of the proof follows
easily. �

3 Instantaneous Percolation Regime

PROOF OF THEOREM 1.2(i). When A WD
R1
1 xd�1r.x/ D 1, it is trivial to

show that jBt j D 1 for any t > 0. So we consider the case when r.k/ D k�˛

with ˛ < d . It suffices to show that P .T .0; x/ > "/ D 0 for any " > 0 and x 2 Zd .
To prove this assertion we will define a sequence fPj gj>0 of subsets of P.0; x/,
which is the set of finite E -paths joining 0 and x such that whenever j ¤ j 0, any
� 2 Pj and � 0 2 Pj 0 are edge disjoint, and

(3.1) Tj WD inffW ˛
� W � 2 Pj g satisfies P .Tj > "/ 6 1 � ı

for some ı > 0, which does not depend on j . Clearly fTj gj>0 will be a sequence
of independent random variables, so that

P .T .0; x/ > "/ 6
Y
j>0

P .Tj > "/:

The product term equals 0 by the property of Tj , and so the desired assertion will
be proved.

In order to define fPj g, fix an integer k > d=.d � ˛/ and for j > 0 let j̀ WD

2j .k � 1/j kxk. Let z be one of the lattice points closest to x=2. Also, let B.j /i ,
1 6 i 6 k � 1; be the annulus centered at z and having inradius .2i � 1/ j̀ and
outradius 2i j̀ . With these ingredients, define

Pj WD f� D hx0x1 : : : xki W x0 D 0; xk D x; xi 2 B
.j /
i for i D 1; 2; : : : ; k � 1g:

It is easy to see that

jPj j D jB.j /1 j � jB
.j /
2 j � � � jB

.j /

k�1
j;(3.2a)

ci l
d
j 6 jB.j /i j 6 Ci l

d
j for some constants ci and Ci , and(3.2b)

lj 6 kek 6 4.k � 1/lj for all e belonging to some � 2 Pj :(3.2c)
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In order to obtain (3.1) we use a standard second moment argument involving
Nj WD jf� 2 Pj W W� 6 "gj to have

(3.3) P .Tj 6 "/ D P .Nj > 1/ >
.E.Nj //2

E.N 2
j /

:

Now using the first inequality of Lemma 2.1

E.Nj / D
X
�2Pj

P
�X
e2�

kek˛!e 6 "
�

>
X
�2Pj

�
"

k C "

�k Y
e2�

kek�˛:

Combining the last inequality with (3.2), we get

(3.4) E.Nj / >
�

"

k C "

�k
.4.k � 1/lj /

�˛k
jPj j > A.k; "/ � l

d.k�1/�˛k
j

for some constant A.k; "/ > 0. On the other hand, noting that for the paths �; � 0 2
Pj , either � D � 0 or j� \ � 0j 6 k � 2,

E.N 2
j / D

X
�;� 02Pj

P
�X
e2�

kek˛!e 6 ";
X
e2� 0

kek˛!e 6 "
�

D

X
�2Pj

P
�X
e2�

kek˛!e 6 "
�

C

k�2X
mD0

X
�;� 02Pj Wj�\� 0jDm

P
�X
e2�

kek˛!e 6 ";
X
e2� 0

kek˛!e 6 "
�
:

Using Lemmas 2.1 and 2.2 to bound the summands of the first and second term,
respectively, in the right-hand side of the above display,

E.N 2
j / 6

X
�2Pj

c.k; "/
Y
e2�

kek�˛

C

k�2X
mD0

X
�;� 02Pj Wj�\� 0jDm

c.k;m; "/
Y

e2�[� 0

kek�˛:

(3.5)

Now (3.2) suggests that jPj j 6
Qk
iD1 Ci l

d.k�1/
j , and for any fixed � 2 Pj and

0 6 m 6 k � 2,

jf� 0 2 Pj W j� \ � 0j D mgj 6
kY
iD1

Ci l
d.k�1�m/
j ;

as j�\� 0j D m implies that there are at most k�1�m endpoints of edges present
in � 0 but absent in � . So the number of summands in the inner sum for the second



224 S. CHATTERJEE AND P. S. DEY

term in (3.5) is at most � kY
iD1

Ci

�2
l
d.2k�2�m/
j :

From (3.2) we also have that the product term in the first summand of
(3.5) is at most

Qk�1
iD1 c

�˛
i l�˛kj and that in the second summand is at mostQk�1

iD1 c
�2˛
i l

�˛.2k�m/
j . Hence, using the fact that ˛ < d , we have

E.N 2
j / 6

k�1Y
iD1

Ci l
d.k�1/
j � c.k; "/

k�1Y
iD1

c�˛i l�˛kj

C

k�2X
mD0

k�1Y
iD1

C 2i l
d.2k�2�m/
j � c.k;m; "/

k�1Y
iD1

c�2˛i l
�˛.2k�m/
j

6 A0.k; "/.l
2d.k�1/�2k˛
j C l

d.k�1/�k˛
j /

(3.6)

for some constant A0.k; "/ > 0. Plugging the estimates of (3.4) and (3.6) into
(3.3) and noting that d.k � 1/ � k˛ > 0 by our choice of k, we finally have
P .Tj 6 "/ > A.k; "/2=.2A0.k; "// DW ı. This completes the argument. �

PROOF OF THEOREM 1.2(ii). We have

E.jBt j/ D
X

x2Zd

P .T .0; x/ 6 t /

6 1C
X

x2Zd ;x¤0

r.kxk/.ect � 1/ D 1C C˛.ect � 1/ 6 ec.1_C˛/t

where the first inequality follows from Lemma 2.6 and the second from the fact
that X

x2Zd ;x¤0

r.kxk/ D C˛ <1: �

This completes the proof of Theorem 1.2.

4 Multiscale Analysis
In this section, our goal is to find a suitable upper bound for the first-passage

time T .0; x/ in terms of kxk when ˛ 2 .d; 2d C 1/. For simplicity, we will only
consider the case when r.k/ D k�˛ for k > 1.

PROPOSITION 4.1. Assume that r.k/ D k�˛, k > 1, with ˛ 2 .d; 2dC1/. Define
�.˛/ WD 1= log2.2d=˛/ for ˛ 2 .d; 2d/. For any t > 0, there exist constants
c; C > 0 depending only on ˛; d such that

(a) P .T .0; x/ > .1C t /ckxk˛�2d / 6 exp
�
�
Ct2

1C t

�
for ˛ 2 .2d; 2d C 1/,
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(b) P
�
T .0; x/ > c.1C t / exp

�
2
p
2d log 2 logkxk

��
6 exp

�
�

t2

1C t
exp.C

p
logn/

�
for ˛ D 2d , and

(c) P
�
T .0; x/ > .1C t /c.logkxk/�.˛/

�
6 exp

�
�C

t2

t C 1
.logkxk/�.˛/

�
for ˛ 2 .d; 2d/.

In order to prove Proposition 4.1, we look at a general ansatz for the optimal path
that will give us an appropriate upper bound for the minimum time to reach a point
from the origin. The idea is to get hold of the minimum among all functions f W
RC ! RC such that the longest edge in the optimal path joining any two points
separated by euclidean distance n from each other connects the euclidean balls of
radius f .n/ around those two points with high probability as n increases to infinity.
Identifying this will enable us to understand the structure of some near-optimal
paths and hence to obtain an upper bound for the minimum time to communicate
between two points.

Let B.y; k/ denote the `1-ball of radius k around y so the volume of B.y; k/ is
at least ckd for some constant c. Fix a point x with kxk D n. Obviously

P .T .0; x/ > t / 6 P .W�.x/ > t /

for any (possibly random) path �.x/ joining 0 and x. We will work with some
particular choices of �.x/, for which first we need to introduce some notation.

Fix a function f W RC ! RC such that f .x/ < x=2 for all x > 1, and let
f0 D n and fk D f .fk�1/ inductively for 1 6 k 6 K WD maxfk W fk > 1g.
Define

(4.1) u0 WD 0; u1 WD x; B0 WD B.u0; f1/; B1 WD B.u1; f1/;
and let u01 2 B0 and u10 2 B1 be random vertices such that the edge hu01u10i
has minimum passage time among all edges connecting the two euclidean balls B0
and B1, i.e.,

hu01u10i WD argminfWhuvi W u 2 B0; v 2 B1g:
In general, for i > 0 and � 2 f0; 1gi we identify u�0 with u�00 and u�1 with u�11;
then we inductively define

B�j WD B.u�j ; fiC1/ for j 2 f0; 1g;

and let u�01 2 B�0 and u�10 2 B�1 be random points such that

hu�01u�10i WD argminfWhuvi W u 2 B�0; v 2 B�1g:

We denote the length of � by k�k, that is k�k WD i for � 2 f0; 1gi .
Now we define a collection of finite E -paths fy�kgKkD1 joining 0 and x as follows.

Since u�00, u�01 2 B�0 and ku�00 � u�01k 6 fk�kC1, there are nearest-neighbor
paths of length at most fk�kC1 joining u�00 and u�01 and staying inside B�0.
Choose one such path ��0. Similarly, choose one nearest-neighbor path ��1 of
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u0

u1

u01

u10

u001

u010

u110

u101

FIGURE 4.1. Pictorial description of the paths y�k in the ansatz for k D
3. Vertices in the small boxes are connected by nearest-neighbor paths.

length at most fk�kC1 joining u�10 and u�11 and staying inside B�1. Using the
edges fhu�01u�10i W � 2

S
i>0f0; 1g

ig and the path segments f.��0; ��1/ W � 2S
i>0f0; 1g

ig as ingredients, define the paths fy�kg16k6K by

y�k WD
[

�2f0;1gk�1

.��0 [ ��1/

k[
iD1

[
�2f0;1gi�1

hu�01u�10i:

In words, y�k consists of the nearest-neighbor path segments ��0 (��0 stays
inside the ball B�0 and connects u�00 and u�01) and ��1 (��1 stays inside the
ball B�1 and connects u�10 and u�11) for � 2 f0; 1gk�1 (there are 2k such path
segments, all having length at most fk) and the edges hu�01u�10i connecting the
balls B�0 and B�1 for � 2

Sk�1
iD0 f0; 1g

i . See Figure 4.1 for a pictorial description
of the path y�3 in the ansatz.

Having defined the paths fy�kg, we now estimate their passage times. Basic prop-
erties of the exponential distribution and the fact that ku � vk 6 fk�k C 2fk�kC1
for u 2 B�0 and v 2 B�1 imply that the passage time for hu�01u�10i is exponen-
tially distributed with rate

(4.2)
X

u2B�0;v2B�1

kv � uk�˛ > c.fk�k C 2fk�kC1/
�˛f 2d

k�kC1:

Also, the passage times of hu�01u�10i, � 2
SK�1
iD0 f0; 1g

i ; are independent, as their
definition involves a minimum over disjoint sets of edges.

Combining the last observation with the inequality in (4.2) and the fact that the
passage times for the nearest-neighbor edges are i.i.d. and exponentially distributed
with mean 1, it is easy to see that Wy�k is stochastically dominated by

X
�2f0;1gk

fkX
iD1

X�;i C

kX
iD1

X
�2f0;1gi�1

c.fi�1 C 2fi /
˛f �2di X� ;
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where fX�g and fX�;ig are i.i.d. and exponentially distributed with mean 1. Now
the second assertion of Lemma 2.1 with

ƒ D ƒf;k WD c

kX
iD1

2i�1.fi�1 C 2fi /
˛f �2di C 2kfk;

� D �f;k WD
�
1C max

16i6k
.fi�1 C 2fi /

˛f �2di

��1
;

(4.3)

together with the fact that T .0; x/ 6 Wy�k implies

(4.4) P .T .0; x/ > .t C 1/ƒf;k/ 6 exp
�
�

t2

2.t C 1/
ƒf;k�f;k

�
for any t > 0 and for any f W RC ! RC such that f .x/ 6 x=2. We need to
minimize the value of ƒf;k over the choices of the function f and 1 6 k 6 K.

4.1 Case 1: ˛ 2 .2d; 2d C 1/ (Proof of Proposition 4.1(a))
In this case, we consider the collection of functions ff a.�/ W a > 2g, where

f a.x/ D x=a. The optimal choice of a will be specified later. We will use a
in the superscript to denote the dependence on a. In that case, f a

k
D n=ak and

Ka D blogn= log ac. To understand the order of magnitude of ƒf a;k , note that

(4.5)

ƒf a;k D c

kX
iD1

2i�1.aC 2/˛a.2d�˛/in˛�2d C 2kna�k

D

(
c.n=a/˛�2d .aC 2/˛ � 1�Œ2a

2d�˛�k

1�2a2d�˛
C 2kna�k if 2a2d�˛ ¤ 1;

c.n=a/˛�2d .aC 2/˛ � k C 2kna�k if 2a2d�˛ D 1;

D

8̂<̂
:
c1n

˛�2d .1 � Œ2a2d�˛�k/C .2=a/kn if a˛�2d > 2;
c1n

˛�2dk C .2=a/kn if a˛�2d D 2;
c1n

˛�2d Œ2a2d�˛�k C .2=a/kn if a˛�2d < 2;

for some constant c1 > 0 depending on ˛, d , and a. To minimize the last expres-
sions with respect to k, note that the functions

y 7!

8̂<̂
:
c1n

˛�2d .1 � Œ2a2d�˛�y/C .2=a/yn if a˛�2d > 2;
c1n

˛�2dy C .2=a/yn if a˛�2d D 2;
c1n

˛�2d Œ2a2d�˛�y C .2=a/yn if a˛�2d < 2;

are minimized when y D logn= log a C c2 for some constant c2: Now note that
n.2=a/k D O.nlog2= loga/when k D logn= log aCc for some constant c. Keeping
in mind that k can be at most Ka D blogn= log ac, let ka D blogn= log a C
minfc2; 0gc. Considering the dominating terms, we have

min
k6Ka

ƒf a;k D ƒf a;ka D

8̂<̂
:
O.n˛�2d / if a˛�2d > 2;
O.n˛�2d logn/� O.n˛�2d / if a˛�2d D 2;
O.nlog2= loga/� O.n˛�2d / if a˛�2d < 2.
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So our choice of a should satisfy a˛�2d > 2. Therefore, (4.5) implies

min
a;k6Ka

ƒf a;k D ƒf a0 ;ka0 D .A0 C o.1//n
˛�2d

for

a0 WD argmin
�

.aC 2/˛

.a˛�2d � 2/
W a˛�2d > 2

�
;

A0 WD
.a0 C 2/

˛

.a˛�2d0 � 2/
:

Also, it is easy to see that �f a0 ;ka0 D Œ1 C n˛�2d .a0 C 2/
˛=a˛�2d0 ��1, so

ƒf a0 ;ka0 �f a0 ;ka0 D C2 C o.1/ for some constant C2 > 0. Therefore, re-
placing .f; k/ by .f a0 ; ka0/ in (4.4) and recalling that kxk D n, we see that if
˛ 2 .2d; 2d C 1/, then there are constants c.˛/; C.˛/ > 0 such that the desired
bound holds. �

4.2 Case 2: ˛ D 2d (Proof of Proposition 4.1(b))
In this case, we consider the sequences fang, which satisfy an � 1 and

log an � logn, and (following the notation of (4.3)) define

ƒ.fang; k/ WD c

kX
iD1

2i�1
�

n

.an/i�1
C 2

n

.an/i

�2d� n

.an/i

��2d
C 2k

n

.an/k
;

�.fang; k/ WD

�
1C max

16i6k

�
n

.an/i�1
C 2

n

.an/i

�2d� n

.an/i

��2d��1
:

The particular choice of fang will be specified later.
In this case, k can be at most Kan D blogn= log.an/c. Now note that

ƒ.fang; k/ D c

kX
iD1

2i�1.an C 2/
2d
C 2kna�kn D c.1C o.1//2

ka2dn C 2
kna�kn :

The two summands in the last expression will be of the same order if akC2dn D n.
Replacing an by n1=.kC2d/, the right-hand side of the last display equals

c.1C o.1// exp
�
k log 2C

2d

k C 2d
logn

�
;

which is minimized when k C 2d �
p
2d log2 n. So we choose k0 WD

b
p
2d log2 n � 2dc and a0n WD n

1=.k0C2d/ and hence

ƒ
�˚
a0n
	
; k0

�
D c.1C o.1// exp

�
2
p
2d log 2 logn

�
:

Also, it can be easily checked that k0 6 Ka
0
n and

�
�˚
a0n
	
; k0

�
D .1C o.1//

�
a0n
��2d

D .1C o.1// exp
�
�
p
2d log 2 logn

�
;
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which makes ƒ.fa0ng; k0/�.fa
0
ng; k0/ D .1C o.1// exp.C

p
logn/ for some C >

0. Therefore, replacingƒf;k and �f;k byƒ.fa0ng; k0/ and �.fa0ng; k0/, respectively,
in (4.4) and recalling that kxk D n, we see that if ˛ D 2d , then there are constants
c.d/; C.d/ > 0 such that the desired bound holds. �

4.3 Case 3: ˛ 2 .d; 2d/ (Proof of Proposition 4.1(c))
In this case, we consider the collection of functions ff 
 W 
 2 .0; 1/g, where

f 
 .x/ D x
 . The optimal choice of 
 will be specified later. We will use 
 in
the superscript to denote the dependence on 
 . In that case, f 


k
D n


k

so that
K
 D blog logn= log.1=
/c. In order to understand the order of magnitude of
ƒf 
 ;k , first note that k 6 K
 implies that

(4.6)

kX
iD1

2i�1 6 2k 6 .logn/log2= log.1=
/; and


k > .logn/�1; and hence n�a

k

> e�a:

The definition of ƒ in (4.3) suggests

ƒf 
 ;k D

kX
iD1

2i�1
�
1C 2n�.1�
/


i�1�˛
n�.2d
�˛/


i�1

C 2kn

k

:

For 
 < ˛=2d , it is easy to see using (4.6) that

ƒf 
 ;k � n
.˛�2d
/ 6 n.˛�2d
/

�
o.1/C n.˛�2d
/.
�1/

kX
iD2

2i�1c


�
D n.˛�2d
/o.1/C 2kn


k

:

For 
 > ˛=2d , in order to understand the order of magnitude of ƒf 
 ;k , note that

2�.k�1/n.2d
�˛/

k�1

ƒf 
 ;k �
�
1C 2n�.1�
/


k�1�˛
D

k�1X
iD1

2�.k�i/.1C c
 /
˛n�.2d
�˛/.


i�1�
k�1/ 6
1X
iD0

2�i :

So

ƒf 
 ;k D

(
n˛�2d
 .1C o.1//C 2kn


k

if 
 < ˛=2d;
C.
/2k�1n�.2d
�˛/


k�1

C 2kn

k

if 
 > ˛=2d:
(4.7)

For fixed 
 , the dominating terms in the last expressions are minimized
when 
k D c.
/= logn for some constant c.
/. Now note that 2kn


k

D

O..logn/log2= log.1=
// when 
k D c.
/= logn. Keeping in mind that k can be
at most

K
 D blog logn= log.1=
/c;
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we choose k
 D blog logn= log.1=
/ C minfc.
/; 0gc, and if we consider the
dominating terms,

min
k6K


ƒf 
 ;k � ƒf 
 ;k
 D

(
O.n˛�2d
 / if 
 < ˛=2d ,
O..logn/log2= log.1=
// if 
 > ˛=2d .

Clearly the optimal choice of 
 to minimize the order of magnitude for the above
expression is ˛=2d . Therefore, (4.7) will suggest

min

;k6K


ƒf 
 ;k � ƒf ˛=2d ;k˛=2d D c.˛/.logn/log2= log.2d=˛/

for some constant c.˛/ > 0.
Also, by the definition of � in (4.3)

ƒf ˛=2d ;k˛=2d�f ˛=2d ;k˛=2d >
Pk˛=2d

iD1 2i�1

1C
�
1C n�.1�˛=2d/.˛=2d/

k˛=2d�1
�˛

D C.˛/2k
˛=2d

D C.˛/.logn/log2= log.2d=˛/:

Plugging the above values ofƒ and � into (4.4) and recalling that kxk D n, we get
the desired result. �

5 Self-Bounding Inequality for Expected Growth
In this section, we will prove an inequality for the expected volume of the ran-

dom growth set Bt when ˛ > d . This will lead to a lower bound for the first-
passage time T .0; x/ later and is inspired by one of the arguments presented in
Trapman [52].

For simplicity we will work with the case r.k/ D k�˛, k > 1, for L.t/ � 1

with fixed ˛ > d . For general L.�/ the proof is similar because of the follow-
ing reason. Given a constant a > 1 and a slowly varying function L.�/ we haveP
k>n k

�aL.k/ D n1�a yL.n/, where yL.�/ is another slowly varying function.
Thus the exponent remains the same if we change the slowly varying function.

Define

(5.1) g.t/ WD E jBt j for t > 0:

Theorem 1.2 suggests that g.t/ 6 ect for some constant c depending only on ˛
and d . We will improve upon this bound and will eventually obtain a much better
one. For that we need to define

f .k; t/ WD sup
kxkDk

P .T .0; x/ 6 t / 2 Œ0; 1�

for k; t > 0.
The following lemma proves that f .k; t/ 6 k�˛h.t/ for a suitable choice of

h.�/. Thus the contribution of the two arguments of f . � ; � / can be separated,
which will be helpful in the analysis of this function.
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LEMMA 5.1. For any fixed ˛ > d and g as in (5.1), there exist constants c; ı > 0
depending only on ˛ and d such that f .k; t/ 6 ck�˛h.t/, where

h.t/ WD t˛
Z t

0

g.t � y/.g.y/ � 1/dy C e�ıt :

It is easy to see that

g.t/ D
X

x2Zd

P .T .0; x/ 6 t / 6
1X
kD0

vd .k/f .k; t/;

where vd .k/ D jfx 2 Zd W kxk D kgj 6 cdk
d�1 for some constant cd > 0. So,

Lemma 5.1 together with the fact that f .k; t/ 6 1 suggests that for any R > 1

g.t/ 6 1C

1X
kD1

cdk
d�1f .k; t/

6 1C

RX
kD1

cdk
d�1
C

X
k>R

cdk
d�1k�˛h.t/ 6 1C c0dR

d
C c0dh.t/R

d�˛:

Taking R D ch.t/1=˛ and simplifying, we see that

(5.2) .g.t/ � 1/˛=d 6 ch.t/

for some constant c D c.d; ˛/ > 0 and h.�/ as in Lemma 5.1.
Lemma 5.1 together with (5.2) gives rise to a recursive inequality involving

g.�/. Solving this inequality, we get an improved bound for g.�/, which leads to
the following bound for the ˛th first-passage time T .0; x/.

PROPOSITION 5.2. For ˛ > d there are constants c; C > 0 depending only on ˛
and d such that for 
 D log2.2d=˛/

log P .T .0; x/ 6 t / 6

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

c.log.1C t //1�
 t
 .1C o.1// � ˛ logkxk C c
if ˛ 2 .d; 2d/;

4dC2
log2 .log.1C t //2.1C o.1// � ˛ logkxk C c

if ˛ D 2d;

˛
�
1C˛
˛�2d

log.1C t /.1C o.1// � logkxk
�
C c

if ˛ > 2d:

One of the main ingredients in the proof of Proposition 5.2 is the following
solution of a self-bounding inequality for positive functions.

THEOREM 5.3. Let g.t/ W Œ0;1/! R be a function satisfying

(5.3) 1 6 g.t/ 6 e�t and g.t/1=� 6 c

�
1C tˇ�1

Z t

0

g.y/g.t � y/dy

�
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for all t > 0 for some constants � > 0, � 2 .0; 1/, ˇ > 0, and c > 1. Then there
exists a constant c� > 1 such that g.t/ 6 G.t/ for all t > 0, where

logG.t/ D

8̂<̂
:
c� .2�t/

log2.2�/.log.1C tˇ //log2.1=�/.1C o.1// if � > 1
2
;

1
ˇ log2.log.1C tˇ //2.1C o.1// if � D 1

2
;

�
1�2�

log.1C tˇ /.1C o.1// if � < 1
2
:

We will present the proof of Theorem 5.3, followed by that of Proposition 5.2
and Lemma 5.1, respectively.

PROOF OF THEOREM 5.3. Given (5.3), we claim that

logg.t/ 6 exp
�
�..2�/k � 1/

2� � 1
log.c.1C tˇ //C ��kt

�
(5.4)

for all t > 0 for all k > 0. When 2� D 1, ..2�/k � 1/=.2� � 1/ is interpreted as k.
We prove (5.4) using induction on k.

The case k D 0 follows readily from our hypothesis. Now assume that (5.4)
holds for k D m. This together with the fact that t 7! tˇ is increasing in t impliesZ t

0

g.t � y/g.y/ dy 6
�
.c.1C tˇ //�..2�/

m�1/=.2��1/
�2 exp.��mt /

Z t

0

dy:

Combining this with the inequality in (5.3) suggests that for all t > 0

g.t/ 6 c�
�
1C tˇ�1

Z t

0

g.y/g.t � y/ dy

��
6 c�

�
1C tˇ .c.1C tˇ //2�..2�/

m�1/=.2��1/ exp.��mt /
��
:

It is easy to see that the factor multiplied with tˇ in the above expression is > 1,
so the above implies

g.t/ 6 c� .1C tˇ /�
�
.c.1C tˇ //2�..2�/

m�1/=.2��1/ exp.��mt /
��
:

Simplifying the expression in the right-hand side we conclude

g.t/ 6 .c.1C tˇ //�..2�/
mC1�1/=.2��1/ exp.��mC1t /;

and thus (5.4) is true for k D mC 1. This proves the claim (5.4).
Having proved (5.4), we will put suitable values of k there to get the desired

result.

Case 1. Suppose � > 1
2

. The optimal value of k should be such that the two
terms containing k in the right-hand side of (5.4) are approximately equal. If we
equate them, then we have

2k�kC1

2� � 1
log.c.1C tˇ // D ��kt or k D log2

.2 � 1=�/�t

log
�
c.1C tˇ /

� :
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So plugging in k0 WD blog2Œ.2 � 1=�/�t= log.c.1C tˇ //�c in (5.4) we have

logg.t/ 6 2�t�k0 6 2�t��1
�
.2 � 1=�/�t

log
�
c.1C tˇ /

��log2 �

�
�

2� � 1
log.c.1C tˇ //

6 c� .2�t/
log2.2�/

�
log.c.1C tˇ //

�log2.1=�/;

where log� c� D �1C log2.1 � 1=.2�//.

Case 2. Suppose � < 1
2

. Then letting k go to infinity in (5.4), we have

g.t/ 6 .c.1C tˇ //
�

1�2� :

Case 3. Finally, we consider the case � D 1
2

. Here we have

logg.t/ 6
k

2
log.c.1C tˇ //C �t2�k

6
k

2
log.c.1C tˇ //C �.c.1C tˇ //1=ˇ2�k :

Similarly to our approach in case 1, we will use a value of k for which the two
summands in the right-hand side are approximately equal. We see that the sum-
mands are equal if k2k D 2�.c.1C tˇ //1=ˇ= log.c.1C tˇ //. In order to capture
the dominating term, it is enough to choose k0 D blog2Œ�.c.1C t

ˇ //1=ˇ �c to have

logg.t/ 6 2 �
k0

2
log.c.1C tˇ // D

1

ˇ log 2
.log.1C tˇ //2.1C o.t//:

This completes the proof. �

PROOF OF PROPOSITION 5.2. Let ˛ > d be fixed. From Lemma 5.1 and equa-
tion (5.2) we have

.g.t/ � 1/˛=d 6 c

�
t˛
Z t

0

g.t � y/.g.y/ � 1/ dy C e�ıt
�

(5.5)

for all t > 0 for some constant c > 0 depending only on ˛ and d . Let � WD d=˛ 2
.0; 1/. Combining the fact that g.t/1=� 6 21=��1.1C.g.t/�1/1=� / (by the Hölder
inequality) with the previous inequality, and noting that 0 6 g.y/ � 1 < g.y/ and
e�ıt 6 1, we have

g.t/1=� 6 C

�
1C t˛

Z t

0

g.t � y/g.y/ dy

�
for all t > 0 for some constant C > 1 depending on ˛ and d . From Theorem
1.2(ii) we also have g.t/ 6 e�t for all t > 0 for some constant � > 0 depending
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on ˛ and d . Therefore, we can apply Theorem 5.3 with ˇ D 1 C ˛ and use the
inequality 1C tˇ 6 .1C t /ˇ to obtain g.t/ 6 G.t/, where

(5.6) logG.t/ D

8̂<̂
:
ct log2.2d=˛/.log.1C t //log2.˛=d/.1C o.1// if ˛ 2 .d; 2d/;
2dC1
log2 .log.1C t //2.1C o.1// if ˛ D 2d;
.1C˛/d
˛�2d

log.1C t /.1C o.1// if ˛ > 2d;

for some constant c depending only on ˛ and d .
Now we use the definition of f . � ; � / and Lemma 5.1 to obtain

log P .T .0; x/ 6 t / 6 logf .kxk; t /

6 c � ˛ logkxk C log
�
t˛
Z t

0

g.t � y/.g.y/ � 1/ dy C e�ıt
�

6 c � ˛ logkxk C
˛

d
logG.t/;

where G.�/ is specified in (5.6). Here we used the fact that G.�/ satisfies the in-
equality (5.5) as equality. Plugging in the expression for logG.t/, we get the re-
quired result. �

PROOF OF LEMMA 5.1. Fix k; t > 0 and x 2 Zd with kxk D k. We begin by
estimating P .T .0; x/ 6 t / and then take the supremum over all x with kxk D k.
Let N.x/ be the number of edges in the optimal path joining 0 and x. Breaking in
terms of the magnitude of N.x/, we have

P
�
T .0; x/ 6 t

�
6 P

�
T .0; x/ 6 t; N.x/ > at

�
C P

�
T .0; x/ 6 t; N.x/ 6 at

�
;

(5.7)

for any a > 0. We first show that for b as in Lemma 2.5(b) and any a > e � b, the
first term in the right-hand side of (5.7) satisfies

P
�
T .0; x/ 6 t; N.x/ > at

�
6

a

b.a � b/
e�at log.a=eb/

kxk�˛:

Let Nk be the number of self-avoiding paths between 0 and x that have k many
edges and passage time at most t . Using the union bound and then the Markov
inequality, we obtain

P .T .0; x/ 6 t; N.x/ > at/ 6
1X
kDat

P .Nk > 1/

6
1X
kDat

E.Nk/

6
1X
kDat

X
x0D0;xkDx

x1;:::;xk�12Zd

P

� kX
iD1

Whxi�1xi i 6 t

�
:(5.8)
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In order to estimate the summands we invoke Lemma 2.1 to have for any � > 0

P

� kX
iD1

Whxi�1xi i 6 t

�
6 e�t��k

kY
iD1

kxi � xi�1k�˛:

Using this bound for the summands in (5.8) and applying Lemma 2.5 for the inner
sum, we see that

P .T .0; x/ 6 t; N.x/ > at/ 6
1X
kDat

e�t��kbk�1kxk�˛

D b�1e�t .b=�/atkxk�˛=.1 � b=�/

for all � > b. Taking � D a > eb we have

(5.9) P
�
T .0; x/ 6 t; N.x/ > at

�
6

a

b.a � b/
e�at log.a=eb/

kxk�˛:

To bound the second term in the right-hand side of (5.7), first note that if a vertex
self-avoiding path between 0 and x of length (i.e., number of edges) at most at
exists, then it will contain at least one edge shared between two vertices at distance
> dkxk=ate from each other. Then by the Markov inequality we have

P
�
T .0; x/ 6 t; N.x/ 6 at

�
6X

x1;x22Zd

kx1�x2k>dkxk=ate

P
�
T .0; x1/CWhx1x2i C T .x2; x/ 6 t

�
:

Recalling that the density ofWhx1x2i is at most kx1 � x2k�˛ 6 kxk�˛.at/˛ when-
ever kx1 � x2k > dkxk=ate, the right-hand side of the last display is

6
X

x1;x22Zd

Z t

0

d
�
P .T .0; x1/ 6 s/

� Z t�s

0

P .T .x2; x/ 6 y/kxk�˛.at/˛ dy:

By taking the sum inside the integral, the above equals

kxk�˛.at/˛
Z t

0

dg.s/

Z t�s

0

g.y/dy D kxk�˛.at/˛
Z t

0

g.y/

Z t�y

0

dg.s/dy

after changing the order of integration. Hence, we conclude

P
�
T .0; x/ 6 t; N.x/ 6 at

�
6 kxk�˛.at/˛

Z t

0

g.y/.g.t � y/ � 1/dy:(5.10)

Combining (5.7), (5.9), and (5.10), with a > eb and ı D a log.a=eb/, we finally
have

P .T .0; x/ 6 t / 6 ckxk�˛
�
t˛
Z t

0

g.t � y/.g.y/ � 1/dy C e�ıt
�

for some constant c D c.˛; d/ > 0 for all x 2 Zd n f0g, t > 0. �
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6 Stretched Exponential and Exponential Growth Regimes
In this section, we will put the necessary pieces together and complete the proofs

of Theorems 1.4, 1.3, and 1.5 (in that order). As before we will work in the case
when L.k/ � 1, so that r.k/ D k�˛ for k > 1. Proof for the general L.�/ is
similar as explained in Section 5.

6.1 Proof of Theorem 1.4
The probability estimate in Proposition 4.1(c) suggests that if c > 0 is large

enough, then

lim
kxk!1

P .T .0; x/ > c.logkxk/�/ D 0:(6.1)

Now for any " > 0 and any x satisfying kxk D bexp.t1=��"/c,

P .logDt < t1=��"/ 6 P .T .0; x/ > t/

6 P .T .0; x/ > .logkxk/�=.1�"�//;

so using (6.1) gives us limt!1 P .logDt < t1=��"/ D 0 for any " > 0.
On the other hand, the probability estimate in Proposition 5.2 suggests that

P .T .0; x/ 6 .logkxk/��"/ 6 exp
�
�˛ logkxk.1 � '.kxk//

�
;

where ' is such that liml!1 '.l/ D 0. Hence,

lim
kxk!1

P .T .0; x/ 6 .logkxk/��"/ D 0;

and using the union bound yields

P .logDt > t1=�C"/ 6
X

xWkxk>exp.t1=�C"/

P .T .0; x/ 6 t /

6
X

kWk>exp.t1=�C"/

cdk
d�1 exp

�
�˛ log k.1 � '.k//

�
:

By the property of ', if t is large enough, then the above is upper bounded byX
k>exp.t1=�C"/

cdk
d�1�.˛�ı/

for any given ı > 0. Since ˛ > d , the above series is convergent for small
enough ı, which implies limt!1 P .logDt > t1=�C"/ D 0. This completes the
proof of the theorem. �
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6.2 Proof of Theorem 1.5
The probability estimate in Proposition 4.1(b) suggests that if c > 0 is large

enough, then

lim
kxk!1

P
�
T .0; x/ > c exp

�
2
p
2d log 2 logkxk

��
D 0:

Now for any " > 0, c <1, and for any x satisfying

kxk D bexp..1 � "/.log t /2=.8d log 2//c;

we have

P

�
logDt <

�
1 � "

8d log 2
.log t /2

��
6 P .T .0; x/ > t/

6 P
�
T .0; x/ > c exp.2

p
2d log 2 logkxk/

�
provided t is large enough. This together with the bound of Proposition 4.1(b)
gives limt!1 P .logDt < .1 � "/.log t /2=.8d log 2// D 0.

On the other hand, the probability estimate of Proposition 5.2 suggests that

P
�
T .0; x/ 6 exp

�p
.d � "/ log 2 logkxk=.4d C 2/

��
6
c exp.�.d C "/ logkxk/;

and so if we let C.d; "/ D 4dC2
.d�"/ log2 and use the union bound, then

P .logDt > C.d; "/.log t /2/

6
X

xWkxk>exp.C.d;"/.log t/2/

P
�
T .0; x/ 6 exp.

p
logkxk=C.d; "/

�
6

X
k>exp.C.d;"/.log t/2/

cdk
d�1 exp.�.d C "/ log k/! 0

as t ! 1, as the above series is convergent. This completes the proof of the
theorem. �

6.3 Proof of Theorem 1.3
As in the proof of Theorems 1.4 and 1.5, we will use Lemma 5.1 to find a

lower bound for T .0; x/ and multiscale analysis to find a matching upper bound.
Using Theorem 1.2(ii) under the assumption that r.k/ D k�dL.k/, k > 1, withR1
1 x�1L.x/dx <1, we have

g.t/ WD EjBt j 6 e�t ; t > 1;

for some � <1. Combining this with the result from Lemma 5.1, we have

P .T .0; x/ 6 t / 6 cr.kxk/h.t/
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where

h.t/ WD td
Z t

0

g.t � y/.g.y/ � 1/dy C e�ıt 6 ebt

for some b > 0. Hence, for any " 2 .0; 1/, we have

P
�
T .0; x/ 6 .d � "/=b logkxk

�
6 cL.kxk/kxk�"

for all x 2 Zd n f0g.
For the upper bound on T .0; x/, we will use multiscale analysis to construct a

path that achieves the logkxk lower bound. We define the function

f .x/ D

p
x

L.x/1=d .log x/1=2d
; x > 2:

The choice of this function is not arbitrary and is almost optimal as seen from the
arguments below.

Using this function, as done in (4.1), we construct a path �.x/ from 0 to x. where
f0 D n and fi D f .fi�1/ for i D 1; 2; : : : . Using (4.3) we have

ƒ WD c

kX
iD1

2i�1f di�1f
�2d
i =L.fi�1/C 2

kfk

D c

kX
iD1

2i�1L.fi�1/ logfi�1 C 2kfk;

� WD
�
1C max

16i6k
f di�1f

�2d
i =L.fi�1/

��1
D
�
1C max

16i6k
L.fi�1/ logfi�1

��1
D ‚.1/:

Now it is easy to see that n1=2
i 6 fi for all i > 0. If we can show that

(6.2) fi 6 nc=2
i

; i > 0;

for some c 2 Œ1;1/, then we have 2i � logn= logfi�1, i > 1, and hence

ƒ �

�
c

kX
iD1

L.fi�1/C
1

logfk

�
logn D ‚.logn/

as
R Ac
A x�1 dx D log c and

R1
1 x�1L.x/dx < 1. Then we are done by (4.4).

We claim that (6.2) holds whenZ 1
1

� logL.x/
x.log x/2

dx <1:

We have
logfi

.1=2/ logfi�1
D 1 �

2 logL.fi�1/C log logfi�1
d logfi�1

:
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Thus (6.2) holds when
kX
iD1

� logL.fi�1/C log logfi�1
logfi�1

is bounded by a finite constant independent of n. Note that 2k � logn. NowZ Ac

A

dx

x.log x/2
D
1 � c�1

logA

and the proof follows by induction on i . We leave the exact calculation to the
interested reader. The lower bound on EjBt j follows by comparison to LRP as
given in [52, theorem 1.1(b)]. �

7 Superlinear Growth Regime (Proof of Theorem 1.6)
As before, for simplicity we will restrict ourselves to the rate function r.k/ D

k�˛, k > 1, where ˛ 2 .2d; 2d C 1/. It follows easily from Proposition 4.1(a)
that there is a constant c > 0 such that P .T .0; x/ > tkxk˛�2d / 6 e�ct for all t
large enough. This in turn implies that

lim
t!1

P .logDt 6 .1=.˛ � 2d/ � "/ log t / D 0:

For the other direction we will prove using an induction argument that there is a
constant C > 1 (to be chosen later) and a recursively defined sequence .
k; k > 0/

(see (7.6) for the precise definition) satisfying

.
k/k>0 is decreasing;(7.1a)


k >
1

˛ � 2d
for all k;(7.1b)


k !
1

˛ � 2d
C
"

2
;(7.1c)

so that

lim
t!1

P .Bt � B.0; C t
k // D 1:(7.2)

Then, choosing k large enough so that 
k < 1=.˛ � 2d/C " and applying (7.2),
the proof of the theorem will be complete.

To emphasize the dependence on ˛, if necessary, we will use the notation
T .˛/. � ; � /, B.˛/t , and D.˛/t instead of T . � ; � /, Bt , and Dt , respectively, when
the rate function is k�˛, k > 1,.

In order to initiate the induction argument for (7.2), we will use the probability
estimate of Proposition 5.2 for ˛ 2 .2d; 2d C1/. Keeping that in mind, we choose
and fix any 
0 satisfying


0 >
˛.1C ˛/=.˛ � 2d/

˛ � d � 1
:(7.3)
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Now note that if Bt 6� B.0; t
0/, then there is at least one x with kxk > t
0 such
that T .0; x/ 6 t , so using the union bound leads to

P .Bt 6� B.0; t
0// 6
X
k>t
0

X
xWkxkDk

P .T .0; x/ 6 t /:

Applying Proposition 5.2 for ˛ 2 .2d; 2d C 1/ to bound the summands of the
above display and noting that jfx W kxk D kgj 6 ckd�1,

P .Bt 6� B.0; t
0// 6
X

kWk>t
0

ck�2 exp
�
˛.1C ˛/

˛ � 2d
log.1C t / � .˛ � d � 1/ log k

�

6 c exp
�
˛.1C ˛/

˛ � 2d
log

1C t

t

� X
kWk>t
0

k�2 ! 0

as t !1. The last inequality follows from the bound of 
0.˛ � d � 1/ >
˛.1C˛/
˛�2d

in (7.3) and the fact that log k > 
0 log t for all the summands. Thus, (7.2) holds
for k D 1.

Now suppose 
m has been defined and (7.2) holds for k D m. In order to choose

mC1 < 
m so that (7.2) holds for k D mC 1, first we estimate the length of the
longest edge used in the LRFPP process by time t under our induction hypothesis.
Observe that on the event fBt � B.0; C t
m/g, for any ı > 0

minfWhx;yi W x 2 Bt ; y 62 B.x; tı/g stochastically dom-
inates minfWhx;yi W x 2 B.0; C t
m/; y 62 B.x; tı/g,

which in turn stochastically dominates an exponential random variable with rateX
x2B.0;C t
m /

X
y62B.x;tı/

kx � yk�˛ 6 jB.0; C t
m/j
X
k>tı

X
uWkukDk

kuk�˛

6 ct
md
X
k>tı

kd�1�˛ 6 ct
md�ı.˛�d/

for some constant c > 0. Therefore, using the inequality 1 � e�x 6 x we have

(7.4) P
�
fminfWhx;yi W x 2 Bt ; y 62 B.x; tı/g 6 tg \ fBt � B.0; C t
m/g

�
6

1 � exp.�ct1C
md�ı.˛�d// 6 ct1C
md�ı.˛�d/:

Now if Bt � B.0; C t
m/ and Whx;yi > t for all x 2 Bt and y 62 B.x; tı/, then all
the edges belonging to the optimal path joining 0 and x 2 Bt must have euclidean



LONG-RANGE FIRST-PASSAGE PERCOLATION 241

length at most tı . Hence for any ˇ > ˛, x 2 Bt implies

t > T .˛/.0; x/ D inf
�2P0;xWkek6tı8e2�

X
e2�

kek˛!e

> inf
�2P0;xWkek6tı8e2�

X
e2�

kekˇ t�ı.ˇ�˛/!e

> t�ı.ˇ�˛/ inf
�2P0;x

X
e2�

kekˇ!e D t
�ı.ˇ�˛/T .ˇ/.0; x/;

which in turn implies x 2 B.ˇ/
t1Cı.ˇ�˛/

. This shows that if we let


mC1 WD 1C ı.ˇ � ˛/;

then Bt � B.0; C t
mC1/ on the event

(7.5)
fBt � B.0; C t
m/g \ fWhx;yi > t 8x 2 Bt and y 62 B.x; tı/g

\
˚
B.ˇ/
t1Cı.ˇ�˛/

� B.0; C t1Cı.ˇ�˛//
	

for any ˇ > ˛.
Now we choose ˇ > 2d C 1 and ı > .1C 
md/=.˛ � d/ so that

(7.6)

mC1 WD 1C ı.ˇ � ˛/

D 1C
1C 
md

˛ � d
.2d C 1 � ˛/C

"

2

.d C 1/.˛ � 2d/

˛ � d
:

We also choose C > 1 such that limt!1 P .B.ˇ/t � B.0; C t// D 1. Proposition
8.2 guarantees the existence of such a C . Simple algebraic manipulation confirms
that f
kgk>0, as defined in the last display, satisfies (7.1). Combining (7.4), our
induction hypothesis that (7.2) holds for k D m and our choices of ı and C , the
limit of the probability of the event in (7.5) is 1, and hence

lim
t!1

P .Bt � B.0; C t
mC1// D 1;

which completes the proof of the induction argument. �

8 Linear Growth Regime
In this section, we consider the case of fixed ˛ > 2dC1. Let B.u; r/ denote the

euclidean `1-ball of radius r around u 2 Rd . In order to establish linear growth
for the LRFPP balls, we will show that for any fixed � 2 .0; 2/,

inf
z;w2B.0;n/Wkz�wk1>�n

T .z;w/
kz � wk1

> c� > 0

with high probability, where the constant c� does not depend on n. For that we
need the following lemma.
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LEMMA 8.1. If ˛ > 2d C 1, � 2 .0; 1/, and c1; c2 are any positive constants, then

P .Whzwi > c1n for all z 2 B.0; c2n/ and w 62 B.z; n� // > 1 � CndC1��.˛�d/

for some constant C > 0.

PROOF. Note that for any fixed z 2 Zd , the random variable minfWhzwi j w 62
B.z; n� /g is exponentially distributed with rateX

uWkuk1>n�

kuk�˛ 6
X
k>n�

ckd�1 � k�˛ 6 cn�.d�˛/;

and hence the random variable minfWhzwi j z 2 B.0; c2n/;w 62 B.z; n� /g stochas-
tically dominates an exponential distribution with rate jB.0; c2n/j � cn�.d�˛/.
Therefore, using the inequality 1 � e�x 6 x and the fact that jB.0; c2n/j 6 cnd

we have

P .minfWhzwi W z 2 B.0; c2n/;w 62 B.z; n� /g 6 c1n/ 6

1 � exp.�jB.0; c2n/j � cn�.d�˛/ � c1n/ 6 Cn�.d�˛/CdC1

for some constant C > 1. �

Lemma 8.1 ensures that if � < 1 is sufficiently close to 1, then with high proba-
bility none of the edges, which have `1-length more than O.n� / and have at least
one end in an `1-ball of radius O.n/ around 0, will be a part of the optimal paths
that start from 0 and have passage time O.n/. This observation plays a crucial role
in proving linear growth for the LRFPP balls when ˛ > 2d C 1. We now use this
key observation to produce a linear lower bound for T .x; y/.

PROPOSITION 8.2. For any ˛ > 2d C 1 and � 2 .0; 2/, if " > 0 is small enough,
there exist constants c.�/, C > 0, such that

P

�
inf

z;w2B.0;n/Wkz�wk1>�n

T .z;w/
kz � wk1

> c.�/

�
> 1 � Cn�.˛�2d�1�"/:

PROOF. Using an induction argument we will prove that there are constants
"; � > 0 small enough, ı; � 2 .0; 1/, c� WD 5�C 3d C 6, and ` 2 N large enough
such that if `m WD `1=�

m

for m > 0 and if

Ak WD

�
inf

z;w2B.0;`1C�
k

/Wkz�wk1>�`k

T .z;w/
kz � wk1

< `�ı
k�1Y
iD1

�
1 � c�`

��
i

��
;(8.1)

then for all k > 0,

P .Ak/ 6 C.�/`
�.˛�2d�1�2"/

k
(8.2)

for some constant C . The choices for all the parameters will be specified as we
proceed through the proof. Once we prove (8.2), the proposition will follow by
taking k such that `1=�

k

D m and c.�/ WD `�ı
Q1
iD1.1 � c�`

��
i /.
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To prove (8.2) for k D 0 we use uthe nion bound and Proposition 5.2 with
T .0; x/ replaced by T .z;w/ and t replaced by kz � wk`�ı to have

P .A0/ 6 c
X

z;w2B.0;`1C�/Wkz�wk1>�`

�
.kz � wk`�ı/.1C˛/=.˛�2d/

kz � wk

�˛

6 c.�/.2`1C�/2d �

�
`.1C��ı/.1C˛/=.˛�2d/

`

�˛
;

as there are at most .2`1C�/2d terms in the above sum. Simple arithmetic shows
that the exponent of ` in the right-hand side of the last display is .2d C 1C "� ˛/
if we take

ı WD 1C � �
.1C " � 2d�/.˛ � 2d/

˛.˛ C 1/
:(8.3)

Thus (8.2) is established for k D 0.
Now suppose (8.2) holds for k D m; we will show that it holds for k D mC 1

as well. Fix any x1; y1 2 B.0; `1C�mC1/ such that kx1 � y1k1 > �`mC1, and let the
optimal E -path joining x1 and y1 be � 2Px1;y1 . We will bound W� D T .x1; y1/
from below. It is easy to see that if

FmC1 WD
˚
hzwi W z 2 B

�
0; 4`1C�mC1

�
;w 62 B.z; `m/

	
;

HmC1 WD
˚

min
e2FmC1

We > 2`1C�mC1

	
;

then � \ FmC1 D ¿ on the event HmC1, as kx � yk1 6 2`1C�mC1.
For the remainder of the argument we will assume that HmC1 occurs. In that

case, all the edges that belong to � and have at least one of their endpoints in
B.0; 4`1C�mC1/ must have `1-length smaller than `m. Our plan is to divide the `1-
ball B.0; 4`1C�mC1/ into smaller disjoint `1-balls having radius `1C�m and study the
contributions of the segments of � restricted to those smaller balls to W� . In order
to do so, let

Om WD `
1C�
m �

˚
�4.`mC1=`m/

1C�
C 2i � 1 W 1 6 i 6 4.`mC1=`m/

1C�
	
;

Em WD `
1C�
m �

˚
�4.`mC1=`m/

1C�
C 2i W 0 6 i 6 4.`mC1=`m/

1C�
	
;

and based on these we define the index sets

Im WD .Om/
d ; zI 0m WD .Em/

d ;

zI km WD .Om/
k�1
�Em � .Om/

d�k; 1 6 k 6 d:

We also define the corresponding collections of disjoint balls B WD fBu D

B.u; `1C�m / W u 2 Img and zBk WD f zBkv D B.v; `1C�m / W v 2 zI kmg for 0 6 k 6 d

(see Figure 8.1 for a pictorial description of one element from each of the collec-
tions B, Bk , 0 6 k 6 2, in case of d D 2). It is easy to see that each of the
collections of disjoint balls B, zBk , 0 6 k 6 d; covers B.0; 4`1C�mC1/. But the
reason behind considering more than one such collection is to make sure that the
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−4`1+κm+1, −4`1+κm+1 + `1+κm , −4`1+κm+1 + 2`1+κm ,−4`1+κm+1 + 3`1+κm ,−4`1+κm+1 + 4`1+κm ,

−4`1+κm+1

−4`1+κm+1 + `1+κm

−4`1+κm+1 + 2`1+κm

−4`1+κm+1 + 3`1+κm

−4`1+κm+1 + 4`1+κm

−4`1+κm+1 + 5`1+κm

u ∈ Im

u2 ∈ Ĩ2m

u1 ∈ Ĩ1m

u0 ∈ Ĩ0m

Bu2

Bu0

Bu

Bu1

FIGURE 8.1. Pictorial description of the balls in B;Bk ; 0 6 k 6 2;

in case of d D 2. Here the balls Bu D B.u; `1C�m / 2 B and Buk D

B.uk ; `1C�m / 2 Bk ; k D 0; 1; 2. Boundary of any ball is in the interior
of another ball.

path � spends enough time going through the bulk of one ball or the other rather
than staying close to their boundaries. By the choice of the collection of smaller
balls, any segment of � that stays close to the boundary of the balls in B must pass
through one of the balls in zBk for some 0 6 k 6 d .

If u; yu 2 Im and ku � yuk1 D 2`1C�m , we say that Bu and Byu are neighboring
balls. Similarly, zBkv and zBk

yv will be called neighboring balls if v; yv 2 zI km and
kv � yvk1 D 2`1C�m . Assuming HmC1 occurs, each of the edges of � , which have
at least one endpoint in B.0; 4`1C�mC1/, can either stay within one ball Bu (resp., zBkv )
or go from a ball Bu (resp., zBkv ) to one of its neighboring balls Byu (resp., zBk

yv ).
Now there are two possibilities for � : either it goes out of the ball B.0; 4`1C�mC1/ at
some point, or the entire path remains inside B.0; 4`1C�mC1/. In the first case, in view
of the last observation, if hzwi 2 � is the first edge while traversing along � from
x1 to y1 such that z 2 B.0; 4`1C�mC1/ and w 62 B.0; 4`1C�mC1/, then kz � wk1 6 `m
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and hence

kx1 � zk1 > kx1 � wk1 � kz � wk1 >
�
3`1C�mC1 � `m

�
> kx1 � y1k1;

as kx1 � y1k1 6 2`1C�mC1. In the second case, we obviously have kx1 � y1k1 >
�`mC1. So, in both cases � must have a segment z� D hx � � � yi that stays within
B.0; 4`1C�mC1/ and satisfies kz�k1 > k�k1 > �`mC1.

For a ball B 2 B [
Sd
kD0

zBk and z;w 2 B , let TB.z;w/ denote the minimum
passage time over all paths that join z and w and stay within B . We say that such a
ball B is good (resp., bad) if

(8.4) inf
z;w2BWkz�wk1>�`m

TB.z;w/
kz � wk1

> (resp., <) `�ı
m�1Y
kD1

�
1 � c�`

��
k

�
:

Recalling the definition of k�k1 for an E -path � , we will see the following:

LEMMA 8.3. If the events HmC1 and

LmC1 WD
˚
numbers of bad balls in B and zBk; 0 6 k 6 d;

are at most kx � yk1`�.1C2�/m

	
occurs, then the path z� D hx � � � yi obtained as above contains disjoint segments
fz�i D hzi � � �wi igi>1 such that

� each z�i stays within some Bi 2 B [
Sd
kD0

zBk such that Bi is good
according to (8.4),
� kz�ik1 > �`m for all i , and
�
P
i>1 kz�ik1 > kz�k1.1 � c�`��m / for c� > 0 defined at the beginning of

the proof of Proposition 8.2.

We postpone the proof of Lemma 8.3; first we will see that this lemma provides
a lower bound for W� by bounding

P
j>1 TBj .zj ;wj /, which will enable us to

conclude

A c
mC1 � HmC1 \ LmC1:(8.5)

By the properties of the path segments fz�i D hzi � � �wi ig in Lemma 8.3 and the
definition of good balls in (8.4), it is easy to see that

W� > Wz� >
X
j>1

TBj .zj ;wj / > `�ı
m�1Y
kD1

�
1 � c�`

��
k

�X
j>1

kzj � wj k1

> `�ı
mY
kD1

�
1 � c�`

��
k

�
kx � yk1

on the event HmC1 \ LmC1. Since kx � yk1 > kx1 � y1k1 and x1; y1 2
B.0; `1C�mC1/ were arbitrary vertices satisfying kx1 � y1k1 > �`mC1, the above
inequality justifies (8.5).
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Thus, in order to complete the induction argument, it remains to estimate
P .HmC1/ and P .LmC1/. On one hand, in view of Lemma 8.1,

P .HmC1/ > 1 � C`
.1C�/.dC1/��.˛�d/
mC1 :(8.6)

On the other hand, our induction hypothesis (8.2) for k D m suggests that B 2
B is bad with probability 6 C`

�.˛�2d�1�2"/
m , as TB > T for every argument.

Also, it is easy to see that if fBig is a collection of pairwise disjoint balls, then
the events fBi is goodg are independent. Since jImj D 4d`

.1=��1/.1C�/d
m , the

expected number of bad balls in B is

6 4d`d.1C�/.1=��1/m � C`�.˛�2d�1�2"/m :

If we choose "; � > 0 such that

"

�
2C

d

˛ � d � "

�
6 ˛ � 2d � 1 and � D 1 �

"

˛ � d
(8.7)

for small enough � > 0, the exponent of `m in the upper bound for the expected
number of bad balls among fBu W u 2 Img is

d.1C �/.1=� � 1/ � .˛ � 2d � 1 � 2"/ < 1=� � 1 � 2�:

So, if we take N D 4d .`mC1=`m/
d.1C�/ and p D �`

1=��1�2�
m =3N , the number

of bad balls in B is stochastically dominated by the binomial.N; p/ distribution.
Now using a standard large deviation argument for the binomial distribution and
recalling that kx � yk1 > �`mC1, we have

P
�X
u2Im

1fBu is badg > kx � yk1`�.1C2�/m

�
6 P .Binomial.N; p/ > 3Np/

6 exp.�Np.3 log 3 � 2//

D exp
�
��.log 3 � 2=3/`.1=��1�2�/m

�
:

The same estimate holds for the number of bad balls among f zBkv W v 2 zI kmg for
each 0 6 k 6 d . Thus by the union bound,

P .LcmC1/ 6 3 exp
�
��.log 3 � 2=3/`.1=��1�2�/m

�
:(8.8)

Combining (8.5), (8.6), and (8.8) if � > 0 is small enough, then

P .AmC1/ 6 C`
.1C�/.dC1/��.˛�d/
mC1 6 C`

�.˛�2d�1�2"/
mC1

by the choice of � . This proves (8.2) for k D mC 1. �

In order to complete the proof of Proposition 8.2, it remains to prove Lemma
8.3.

PROOF OF LEMMA 8.3. Recall that z� D hx � � � yi � B.0; 4`1C�mC1/ and kz�k1 >
�`mC1. Let fByui gi>0, yui 2 Im; be a sequence of balls such that Byui is a neighbor
of Byui�1 for i > 1, x 2 Byu0 , and for i > 1 the path z� enters Byui after exiting from
Byui�1 . We can think of fByui gi>0 as a trajectory of a nearest-neighbor random walk
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that takes its values in B. If a ball Bu is bad according to (8.4) and if it appears
more than once in the sequence fByuj g, then we remove the loop created by the as-
sociated random walk atBu. So a bad ball can appear at most once in this sequence.
Abusing notation, we write fByui g for the loop-erased sequence. Suppose z� enters
Byui through yxi and leaves it through yyi . So hyxi � � � yyi i is a segment of z� staying
within Byui whenever Byui is good, otherwise hyxi � � � yyi i may not be a segment of z� .
Also, let fyuij gJjD1 be the subsequence of fyuigi>0 such that for each j the portion
of z� within Byuij does not stay within B.yxij ; �`m/. To simplify notation, we will
write .xuj ;xxj ;xyj / instead of .yuij ; yxij ; yyij /, and y0 � x and xJC1 � y.

We say that the segment hxxj � � � xyj i is admissible (resp., inadmissible) if Bxuj
is good (resp., bad). In the same spirit, the segment hxyj � � � xxjC1i will be called
inadmissible if it contains a segment of the form hxxk � � � xyki that is not admissible;
otherwise hxyj � � � xxjC1i will be called admissible.

An admissible segment hxxj � � � xyj i will be called short if the entire segment re-
sides within B.xxj ; 14`

1C�
m /, otherwise we say that hxxj � � � xyj i is long. In the same

spirit, an admissible segment hxyj � � � xxjC1i will be called short if kxyj �xxjC1k1 <

2�`m, otherwise we call it long. Instead of the entire sequences fxxj gJC1jD1 and

fxyj gJjD0, we need to consider the following subsequences fxxjl g
LC1
lD1

and fxyjl gLlD0.
We define fjlg along with disjoint sets Li � N;�1 6 i 6 5; inductively starting
with j0 WD 0 and Li D ¿. Having defined jl :

1. Scan through the segments hxyjl � � � xxjlC1i, hxxjlC1 � � � xyjlC1i, hxyjlC1 � � �
xxjlC2i; : : : , sequentially.

2. If hxxjlCk � � � xyjlCki is inadmissible for some k > 1 and all previous seg-
ments are short, then we let jlC1 WD jl C k. If kxyjl � xxjlC1k1 > �`m,
then we include l in L�1; otherwise we include l in L0. Then we go back
to step 1 with l replaced by l C 1.

3. If hxyjlCk�1 � � � xxjlCki is the first long segment for some k > 1, then we let
jlC1 WD jl C k and jzl WD jl C k � 1. In addition:

(a) If kxyjl �xyjzlk1 > �`m, then we include l in L1; otherwise we include
l in L2.

(b) If jlC1 D J C 1, then we let L D l and stop; otherwise xyjlC1 is
defined and we go back to step 1 with l replaced by l C 1.

4. If hxxjlCk � � � xyjlCki is the first long segment for some k > 1, then we let
jlC1 WD jlCk. Here we also include l in L3 or L4 depending on whether
kxyjl � xxjlC1k > �`m or not, and we go back to step 1 with l replaced by
l C 1.

5. If for some k > 1 all the segments hxyjlCk0�1 � � � xxjlCk0i, 1 6 k0 6 k; and
hxxjlCk0 � � � xyjlCk0i, 1 6 k0 < k; are short and jl C k D J C 1, then we let
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L D l and jLC1 D jl C k. If kxyjL � xxjLC1k > �`m, then we include L
in L2; otherwise we let L5 WD fLg.

To simplify notation, we write .xl ; yl ;ul/ instead of .xxjl ;xyjl ; xujl / and zl instead
of jzl .

Having defined fxlgLC1lD1
and fylgLlD0, note that if l 2 L4, then hxlC1 � � � ylC1i

is a segment of z� , and it has a subsegment of the form hxlC1 � � � zxlC1i such that
kxlC1 � zxlC1k1 > 1

4
`1C�m . So if jL4j > kx � yk1=14`

1C�
m , thenX

l2L4

khxlC1 � � � zxlC1ik1 > kx � yk1;

and hence the segments fhxlC1 � � � zxlC1i W l 2 L4g fulfill the criteria of Lemma
8.3. Otherwise, if jL4j < kx� yk1=14`

1C�
m , then using the triangle inequality and

noting that y0 D x and xLC1 D y,X
l 62L�1[L0

kxl � ylk1

> kx � yk1 �
5X

iD�1

X
l2Li

kyl � xlC1k1 �
X

l2L�1[L0

kxl � ylk1

> kx � yk1 �
X
l2L1

�
kyl � yzlk1 C kyzl � xlC1k1

�
� �`m.1C jL0j C 4kx � yk1=`1C�m /

�

X
l2L�1[L2[L3

kyl � xlC1k1 �
X

l2L�1[L0

kxl � ylk1:

It is easy to see that jL�1jC jL0j 6 kx� yk1`
�.1C2�/
m on the event LmC1, and

hence X
l2L�1[L0

kxl � ylk1 6 kx � yk1`�.1C2�/m � 2`1C�m :

Also recall that kx � yk1 > �`mC1 > �`1C�m if � > 0 is small enough. So if we
define

… WD fhyl � � � xlC1i W l 2 L�1 [ L2 [ L3g [ fhyl � � � yzli; hyzl � � � xlC1i W l 2 L1g;
then the inequality in the previous display reduces toX

l 62L�1[L0

kxl � ylk1 > kx � yk1
�
1 � .3C 5�/`��m

�
�

X
y�2…

ky�k1:(8.9)

Now we focus on the segments in …. We claim that each segment y� 2 …

(a) satisfies ky�k1 > �`m, and
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(b) (assuming that the event HmC1 occurs) stays within `1-distance 1
2
`1C�m

from the boundary of some of the balls in B.

To see that (a) holds, note that by the definition of L2,

kyl � xlC1k1 > kyzl � xlC1k1 � kyl � yzlk1 > 2�`m � �`m D �`m:

The facts that kyl�xlC1k1 > �`m for l 2 L3[L�1 and kyl�yzlk1, kyzl�xlC1k1
> �`m for l 2 L1 follows trivially from the definition of Li . To see that (b) holds
observe that if HmC1 occurs, then by the definition of fxj g and fyj g, each xj and
yj stays within `1-distance `m from the boundary of some ball Bu, and by the
definition of … any segment of the form hxj � � � yj i that is a part of y� 2 … must lie
within B.xj ; 14`

1C�
m /.

It is easy to see that by properties (a) and (b) of the segments in …, any y� 2 …
should consist of path segments fy�igi>1 such that each y�i satisfies ky�ik1 > �`m
and stays within one of the balls zBkv for v 2 zI km and 0 6 k 6 d . But we need
to discard those segments that belong to bad balls. In order to do so, for each
y� 2 … we determine the associated loop-erased sequence of balls fBj g, as we
did in the beginning of the proof. Then, segregating the portion of y� within the
bad balls among fBj g y� can be written as y� � y�I1 y�

A
1 y�

I
2 � � � such that fy�Ii gi>1

are inadmissible segments, whereas fy�Ai gi>1 are admissible ones. Separating the
segments fy�Ai W ky�

A
i k > �`mg from the rest and using the triangle inequality,X

y�2…

X
i>1Wky�Ai k>�`m



y�Ai 

 >

X
y�2…

ky�k1 �
ˇ̌˚
zBkv W v 2 zI

k
m; 0 6 k 6 d; zBkv is bad

	ˇ̌
�
�
2`1C�m C 2�`m

�
:

So, on the event LmC1 the above inequality reduces toX
y�2…

X
i>1Wky�Ai k1>�`m

ky�Ai k1 >X
y�2…

ky�k � .d C 1/kx � yk1`�.1C2�/m � 3`1C�M :

Combining this inequality with (8.9),

(8.10)
X

l 62L�1[L0

kxl � ylk1 C
X
y�2…

X
i>1Wky�Ai k1>�`m



y�Ai 

 >

kx � yk1
�
1 � c�`

��
m

�
:

Now by the definition of fxj g and fyj g, it is clear that for l 62 L�1 [ L0 either
kxl � ylk1 > �`m or hxl � � � yli has a subsegment of the form hxl � � � zxli such that
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kxl � zxlk1 > �`m. So if we define the subsegments fz�lgl 62L�1[L0 of z� by

z�l WD

(
hxl � � � zxli if kxl � ylk1 6 �`m;

hxl � � � yli if kxl � ylk1 > �`m;

then clearly kz�lk1 > �`m and kz�lk1 > kxl � ylk1. Combining this with (8.10)
we see that˚

y�Ai W i > 1;


y�Ai 

1 > �`m; y� 2 …

	
[ fz�l W l 62 L�1 [ L0g

fulfill the requirement of this lemma. �

Before proceeding further, let us mention an immediate corollary of Proposi-
tion 8.2.

COROLLARY 8.4. For ˛ > 2d C 1 and x 2 Zd such that kxk1 D n, with
probability 1 � o.1/ the optimal path joining 0 and x stays within B.0; Cn/ for
some large constant C .

PROOF. Using Lemma 8.5(c) below P .T .0; x/ > ckxk1/ D o.1/. If T .0; x/ 6
cn, Lemma 8.1 suggests that there exists � 2 .0; 1/ such that for any constant
C < 1 the optimal path does not contain an edge having length more than n�

and one end in B.0; Cn/. So if the optimal path goes out of B.0; Cn/ through
y 2 B.0; Cn/ for the first time as we traverse along the path starting from 0, then
with probability 1 � o.1/, kyk1 > Cn � n� and T .0; y/ 6 cn, which event again
has probability 1 � o.1/ if we choose C large enough. �

Proposition 8.2 ensures that if ˛ > 2d C 1, then with high probability the first-
passage metric T .x; y/ grows at least linearly in kx � yk. For the other direction
we have the following lemma.

LEMMA 8.5. Let x 2 Zd and ˛ > 0. Then:

(a) T .0; x/ is stochastically dominated by
Pkxk
iD1Ei , where the fEig are i.i.d.

and the common distribution is exponential with mean 1.

(b) E.T .0; x// 6 kxk.
(c) For any � > 1, P .T .0; x/ > �kxk/ 6 exp.�.� log� � �C 1/kxk/.

PROOF. Note that (b) follows from (a) trivially. (c) follows from (a) by using
a standard large deviation argument for exponential distribution. To see that (a)
holds, note that if � 2 P0;x consists of kxk many nearest edges, then for any ˛,

W�
d
D
Pkxk
iD1Ei and T .0; x/ is stochastically dominated by W� . �
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Combining Proposition 8.2 and Lemma 8.5 with Liggett’s subadditive ergodic
theorem [40] and a standard “denouement” argument described in [23, p. 17], we
get the “shape result” for LRFPP with ˛ > 2d C 1.

PROOF OF THEOREM 1.7. For x 2 Zd and m; n 2 Z such that m < n, let
Xm;n WD T .mx; nx/. Then, from the definition of T . � ; � / it is straightforward to
check that

(i) X0;n 6 X0;m CXm;n whenever 0 < m < n,
(ii) the joint distribution of fXm;mCk; k > 1g does not depend on m, and

(iii) for each k > 1, fXnk;.nC1/k; n 2 Zg is a stationary process.

Also, using Lemma 8.5(b), E.X0;n/ 6 nkxk. So, applying Liggett’s subadditive
ergodic theorem (see [40, theorem 1.10])

if �.x/ WD infn 1n E.T .0; nx//; then limn!1 1
n
T .0; nx/ D �.x/ a.s. provided(8.11)

for each k > 1; fY kn WD Xnk;.nC1/kgn2Z is an ergodic process.(8.12)

We postpone the argument for (8.12) towards the end of the proof; now we will
see the consequence of (8.11). First note that if c > 0 is chosen small enough,
then by Proposition 8.2, we have P .T .0; nx/ > cn/! 1 for any x 2 Zd n f0g as
n!1, so

E.T .0; nx// > cnP .T .0; nx/ > cn/ > c=2

for all n large enough, which ensures �.x/ > 0 for any x 2 Zd n f0g.
We extend the definition of �.�/ to the whole of Rd using the standard proce-

dure, which we mention here for the sake of completeness. For y 2 Rd , let

T .0; y/ D min
x2Zd Wky�xk161=2

T .0; x/:

In view of (8.11), if y 2 Qd , then for any m such that my 2 Zd ,

�.y/ WD lim
n!1

1

n
T .0; ny/ D

1

m
�.my/ a.s.

Finally, using subadditivity and Lemma 8.5(a), it is easy to see that, for any x; y,
jT .0; x/ � T .0; y/j is stochastically dominated by a sum of dnkx � yk1e many
i.i.d. mean 1 exponential random variables. This together with Lemma 8.5(c) and
the Borel-Cantelli lemma implies

�.x/ WD lim
y!x

y2Qd

�.y/ exists for all x 2 Rd and �.x/ > 0 whenever x ¤ 0.

In addition, using Lemma 8.5(c), we once again have
P

x2Zd P .T .0; x/ >
�kxk/ <1; which implies

fx 2 Rd W kxk1 6 t=�g � fx 2 Rd W T .0; x/ 6 tg
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for large enough �. Combining the last two displays, we are in a position to apply
the Denouement argument (see p. 17 of [23]) and conclude the “shape result” with
A WD fx 2 Rd W �.x/ 6 1g.

Therefore, in order to complete the proof of the theorem, it remains to show
(8.12). Fix x 2 Zd , k > 1, and let � denote the law of the infinite vec-
tor .Y kn /n2Z and ' be the measure-preserving transformation on RZ

C
defined by

.'!/k WD !kC1. In view of [54, theorem 1.5], it suffices to show that for
any two events A;B satisfying �.A/; �.B/ > 0, there is an n 2 N such that
�.A \ '�nB/ > 0. To prove this assertion, we fix " > 0 and choose k; l large
enough so that there exists Aj;l ; Bj;l 2 �fY k�k; Y

k
�kC1

; : : : ; Y k
l
g satisfying

�.A�Aj;l/; �.B�Bj;l/ 6 "=4;(8.13)

which implies ˇ̌
�
�
A \ '�nB

�
� �

�
Aj;l \ '

�nBj;l
�ˇ̌

6 �
�
A�Aj;l

�
C �

�
'�nB�'�nBj;l

�
6 �

�
A�Aj;l

�
C �

�
B�Bj;l

�
6 "=2;

(8.14)

as ' is measure preserving.
Next we see that applying Corollary 8.4 we can have L D L.j; l; "/ large

enough such that
�.�Lj;l/ > 1 � "=8;

where

�Lj;l WD
˚
Y ki ;�j 6 i 6 l; is determined by the edge weights in

fWhzwi j z;w 2 B..l � j /x=2;L/g
	
:

Then it is easy to see thatˇ̌
�.Aj;l/�

�
'�nBj;l

�
� �

�
Aj;l \�

L
j;l

�
�
�
'�nBj;l \�

L
jCn;l�n

�ˇ̌
6 "=4;

and if n is chosen large enough depending on L, then Aj;l \ �Lj;l and '�nBj;l \
�L
jCn;l�n

are independent so thatˇ̌
�
�
Aj;l \ '

�nBj;l
�
� �

�
Aj;l \�

L
j;l

�
�
�
'�nBj;l \�

L
jCn;l�n

�ˇ̌
6 "=4:

Combining the last two displays with (8.13) and (8.14) and recalling that ' is mea-
suring preserving,

j'.A \ '�nB/ � '.A/'.B/j 6 3"=2

for large enough n. Starting with small enough " > 0, we get �.A \ '�nB/ >
0. �
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