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ABSTRACT
We introduce a changepoint detection algorithmwhich uses a linear

decomposition of the precision matrix to identify a change in the

partial correlation structure of a time series. Our approach uses

likelihood ratio tests to identify clusters of dimensions that are

responsible for the change, thus providing more of an explana-

tion as to why the changepoint occurs. We also greatly reduce the

number of hypothesis tests needed to identify the relevant group

of dimensions causing the change when compared to fully local

methods that test each component of the precision matrix individu-

ally. We demonstrate the competitive accuracy and run-time of our

approach using several simulation studies, and we present three

real-world case studies using our approach.
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1 INTRODUCTION
The goal of changepoint detection is to identify when a change

occurs in the distribution that generates a sequence of data. The ma-

jority of changepoint detection methods focus on detecting changes

to the mean of the distribution (e.g. see [9]). However, many use
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cases for real-world datasets require detecting changes in other

distributional parameters. For instance, detecting changes in corre-

lation between the prices of stocks is of great interest. The covari-

ance matrix, and by extension its inverse (i.e. the precision matrix),

can be used to detect changes in partial correlation, which is the

focus of our work.

In order to apply precision changepoint detection to real-world

data, two key issues need to be addressed. First, many types of real-

world data are high-dimensional, which makes precision change-

point detection much more difficult. The number of entries in the

precision matrix increases quadratically with increasing dimension-

ality, causing computational challenges in terms of running time

and memory usage. High-dimensional precision matrices also intro-

duce statistical challenges, including estimation [16] and hypothesis

testing [12]. A common strategy for dealing with high-dimensional

precision matrices is to assume that the precision matrix is sparse.

This sparsity assumption has a natural consequence because a 0 en-

try at row 𝑖 and column 𝑗 of the precision matrix indicates that the

random variables 𝑿𝑖 and 𝑿 𝑗 are conditionally independent given

all of the other variables.

A second issue involves explainability as changepoint detection

algorithms typically only report the point in time when the change

happens (referred to as localization in time). In the case of a covari-

ance or precision changepoint, a more informative result is to also

perform localization in dimensions. This additional form of local-

ization reports which features (i.e. dimensions) are responsible for

this change, thereby providing more of an explanation regarding

the changepoint. This explanation is especially useful in domains

involving scientific discovery, public safety, and finance.

Our work seeks to address these two issues by introducing a com-

putationally efficient precision changepoint detection algorithm for

high-dimensional data that can localize the change in both time and

features. The key to our approach is to decompose the precision

matrix into smaller blocks of related dimensions. In doing so, we

can monitor these blocks for changes in precision, and thus make

the changepoint detection more scalable and explainable.

2 RELATEDWORK
Our discussion of related work will focus on changepoint detection

methods that detect changes in the covariance or precision of a dis-

tribution. Some of the earliest methods focus on detecting changes

to the variance of a univariate time series (e.g. [28, 17, 13]). For
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multivariate data, many approaches for covariance changepoint

detection monitor the cumulative sum (CUSUM) statistic (e.g. [7,

2]), which accumulates the difference between the covariance ma-

trix entries and a reference value representing the in-control state

for the corresponding matrix entry. These techniques, however, do

not scale to high-dimensions and a variety of strategies are needed

to deal with large high-dimensional covariance matrices, includ-

ing removing small entries of the covariance matrix [15], sparse

Gaussian graphical models [31] and independent one-dimensional

projections [27]. Another category of techniques look at changes

in factor models, where these changes can be in the factor loadings

or the number of factors [14, 4, 5]. Recent methods for precision

changepoint detection are based on de-sparsified estimators [3] or

sparse Gaussian graphical models [19, 18]. Finally, another closely

related area is correlation changepoint detection, with a recent

method using graph neural networks [32].

This work is also connected to hypothesis testing of covariance

matrices [24, 25, 20, 10, 21], differential correlation matrices [11]

and differential precision matrices [30]. As described in [12], global
tests identify overall structural differences in the matrices while

local tests look for differences in individual matrix entries, but

are computationally expensive due to extensive hypothesis testing.

Many global methods (e.g. [30, 18]) inspect each matrix entry but

report the maximum value of the test statistic over the entries; these

types of global tests can be easily converted to local tests by having

them return the corresponding entry for the maximum-valued test

statistic, but they still incur a large computational expense. None of

the existing approaches address both localization in feature space

as well as improved computational efficiency. Our work will fill

this gap by addressing these two issues.

3 METHODOLOGY
3.1 Definitions
Let 𝑿̃ = {𝑿̃0, ..., 𝑿̃𝑇 }, be a time series where each observation 𝑿̃𝑡 ∈
R𝑝 . First, we perform a series of preprocessing steps on 𝑿̃ - specific

to the dataset - such that we treat the result 𝑿 = {𝑿0, ...,𝑿𝑇 } as an
temporal ordering of independent, identically distributed, approxi-

mately Gaussian samples, where 𝑿𝑡 ∼ N(0, 𝚺𝑡 ),∀𝑡 = 0, ...,𝑇 . Let

S = 1

𝑇

∑𝑇
𝑡=0 𝑿𝑡𝑿⊤

𝑡 be the sample covariance matrix for 𝑿 .

We aim to identify changepoints in time and localize these

changepoints in dimensions of 𝑿 in which the structure of the in-

verse covariance matrix (i.e. the precision matrix)𝚯 = 𝚺
−1

changes.

More formally, a time 𝑘 is regarded as a changepoint if

𝚯0 = ... = 𝚯𝑘−1 ≠ 𝚯𝑘 = ... = 𝚯𝑇 ; 0 < 𝑘 < 𝑇 (1)

The main idea behind our work is to use a linear precision model

[1, 33] for 𝚯, which is given by

Θ =

𝑀∑︁
𝑖=0

𝛼𝑖 · 𝑯𝑖 (2)

Here, each basis matrix 𝑯𝑖 ∈ R𝑝×𝑝 is symmetric. The set of

basis matrices {𝑯0, ...,𝑯𝑀 } are linearly independent, and there is

assumed to be a set of scalar coefficients 𝜶 = {𝛼0, ..., 𝛼𝑀 } such
that

∑𝑀
𝑖=0 𝛼𝑖 · 𝑯𝑖 is positive definite; here, we use the operator ·

to indicate an element-wise multiplication of the scalar 𝛼𝑖 with

each entry of the matrix 𝑯𝒊 . We additionally restrict {𝑯0, ...,𝑯𝑀 }

to be orthogonal for the purpose of interpretable localization of

changes. Under these assumptions, specification of {𝑯0, ...,𝑯𝑀 }
in our approach remains somewhat flexible, and should be rep-

resentative of the "stable" behavior of the data - such as sensors

that operate together or stocks of the same sector. We assume

that there is an early section in time of training data that can be

used for informing the choice of each 𝑯𝑖 . Formally, ∃𝑘 such that

𝚯0 = 𝚯1 = ... = 𝚯𝑘 where 0 < 𝑘 < 𝑇 , which implies that the

training window 𝑿𝑡𝑟𝑎𝑖𝑛 = {𝑿0, ...,𝑿𝑘 } contains no changepoint.

3.2 Construction of Basis Matrices
We focus on a construction of {𝑯0, ...,𝑯𝑀 } from data such that

each𝑯𝑖 captures the strength of the partial correlation relationships

present over specific clusters of dimensions in 𝑿 .

To specify these matrices, we first apply Graphical Lasso [22] to

the training window 𝑿𝑡𝑟𝑎𝑖𝑛 , which minimizes

𝑓 (𝚯) = 𝑡𝑟 (S𝑡𝑟𝑎𝑖𝑛𝚯) − 𝑙𝑜𝑔(𝑑𝑒𝑡 (𝚯)) + 𝜆
∑︁
𝑗≠𝑘

𝑑𝑒𝑡 (Θ𝑗𝑘 ) (3)

We convert the precision matrix estimate 𝚯𝐺𝐿 from Graphical

Lasso into a distance matrix 𝑫 based on the magnitudes of these

values, which is then used for single linkage clustering. This conver-

sion is as follows, where 𝑎𝑏𝑠 (𝑨) indicates the elementwise absolute

value of 𝑨.
𝑫 = 𝑎𝑏𝑠 (𝚯𝐺𝐿) −𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝚯𝐺𝐿))
diag(𝑫) = 0

𝑲 = single-linkage(𝑫)
(4)

Where 𝑲 is cluster assignments for each dimension, produced by

single linkage clustering. Finally, we use 𝑲 and partition the dimen-

sions into𝑀 > 1 distinct clusters. These partitions are then used to

construct each 𝑯𝑖 , 𝑖 = 0, ..., 𝑀 , by populating 𝑯𝑖 with all the values

of 𝚯𝐺𝐿 that correspond to the dimensions in the relevant cluster.

Let 𝒄𝑖 be a set containing the indices of dimensions in cluster 𝑖

𝑯𝑖 [ 𝑗, 𝑘] = 𝚯[ 𝑗, 𝑘]; ∀𝑗 ∈ 𝒄𝑖 ,∀𝑘 ∈ 𝒄𝑖 (5)

Using this approach, we can optionally perform further modi-

fications of {𝑯0, ...,𝑯𝑀 }, such as by collecting all diagonal terms

into a single diagonal matrices for isolating variances, adding extra

matrices to model between cluster interactions, or adding 𝜖 > 0

entries to capture induced changes for zeroed-out entries of 𝚯𝐺𝐿 .

Overall, this framework provides a great deal of flexibility as to

what types of changes can be monitored.

3.3 Estimation
Given the matrices {𝑯0, ...,𝑯𝑀 }, the Maximum Likelihood Esti-

mates for the coefficients 𝜶 in the linear precision model 𝚯 =∑𝑀
𝑖=0 𝛼𝑖 · 𝑯𝑖 can be found following several approaches [1, 33, 26,

23], using the log-likelihood function

2

𝑇
𝑙𝑜𝑔(𝐿(𝜶 )) = 𝑡𝑟 [(

𝑀∑︁
𝑖=0

𝛼𝑖 · 𝑯𝑖 )S] − 𝑙𝑜𝑔(𝑑𝑒𝑡 (
𝑀∑︁
𝑖=0

𝛼𝑖 · 𝑯𝑖 )) (6)

For our purposes, we continue to use the lasso regularized objec-

tive under the assumption of sparsity in Θ =
∑𝑀
𝑖=0 𝛼𝑖 · 𝑯𝑖 , with a 𝜆

value chosen high enough for stability on the data, and consistent
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with the 𝜆 used in Equation 3.

𝑓 (𝑿 ,𝜶 ) = 2

𝑇
𝑙𝑜𝑔(𝐿(𝑿 ,𝜶 )) =

𝑡𝑟 [(
𝑀∑︁
𝑖=0

𝛼𝑖 · 𝑯𝑖 )S] − 𝑙𝑜𝑔(𝑑𝑒𝑡 (
𝑀∑︁
𝑖=0

𝛼𝑖 · 𝑯𝑖 )) + 𝜆
∑︁
𝑗≠𝑘

𝑑𝑒𝑡 (Θ𝑗𝑘 )
(7)

We include a log-barrier term [8] in a simple iterative, first-order,

sub-derivative solution to Equation 7 to encourage only solutions

of 𝜶 where

∑𝑀
𝑖=0 𝛼𝑖 · 𝑯𝑖 is positive definite. Note that by the con-

struction of each 𝐻𝑖 in Equations 4 and 5, a valid positive definite

solution is one where 𝜶 = 1 ∈ R𝑀 , which is where we start the first

iteration. Our learning rate is fixed at 𝛽 = 0.005 over 100 iterations.

3.4 Changepoint Identification
We introduce our testing procedure for a setting of two distinct

samples of data, where the separation between the two samples

functions as a candidate changepoint in time. We test for change-

points as characterized by Equation 1 and we use the linear mod-

eling assumption for 𝚯 in Equation 2. Then, we define a single

global changepoint in 𝚯 by a change in any of the 𝛼𝑖 coefficients of

Equation 2. Let 𝜶 𝑡 = {𝛼𝑡
0
, . . . , 𝛼𝑡

𝑀
} be the set of coefficients at time

𝑡 . Formally, 𝑘 is a global changepoint if

𝜶 0 = ... = 𝜶𝑘−1 ≠ 𝜶𝑘 = ... = 𝜶𝑇
(8)

Instead of testing for global changepoints, we aim to test for local-
ized changes in the clusters of dimensions corresponding to the

specification of each 𝑯𝑖 matrix, which we approach with multiple

hypothesis tests, one for each coefficient 𝛼𝑖 . For a given candidate

point 𝑘 and two temporally ordered samples of data 𝑿
0:𝑘 ,𝑿𝑘+1:𝑇

we define the null hypothesis as

H0 : 𝜶 0 = ... = 𝜶𝑘−1 = 𝜶𝑘 = ... = 𝜶𝑇
(9)

We propose testing multiple alternative hypotheses of the form

H𝐴𝑖
: 𝛼0𝑖 = ... = 𝛼𝑘−1𝑖 ≠ 𝛼𝑘𝑖 = ... = 𝛼𝑇𝑖 ; 𝑖 = 0, ..., 𝑀 (10)

In short, we test for whether a single coefficient 𝛼𝐴
𝑖
(over “All”

the data 𝑿1:𝑇 ), fits the data sufficiently when compared to two

different coefficients 𝛼𝐿
𝑖
(for the “Left” part 𝑿

0:𝑘−1), and 𝛼
𝑅
𝑖
(for the

“Right” part 𝑿𝑘 :𝑇 ).

In contrast to a global test on precision matrices of the form𝚯0 =

𝚯1, our tests localize changes to clusters of dimensions that interact

with a single scalar 𝛼𝑖 . While this may seem a restrictive assumption

when compared to a fully local test of the form Θ𝑖, 𝑗,1 = Θ𝑖, 𝑗,2, for

all 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑝 , we greatly reduce the number of hypothesis

tests, and provide easier interpretability in higher dimensional

settings where the user has access to the set of dimensions in

each cluster. Our approach lies somewhere in between the fully

global and fully local regimes, and relies on testing the Maximum

Likelihood Estimates of this reduced number of coefficients𝑀 << 𝑝 ,

instead of the 𝑝 regression coefficients for each dimension on each

sample[30].

We make use of the likelihood ratio as our test statistic, in ac-

cordance with Wilks’ theorem[29]. The likelihood ratio for a single

Algorithm 1:
Input :𝑿 = {𝑿0, ...,𝑿𝑇 }, 𝜆, 𝑀,𝑤, 𝑠, 𝛼𝐹𝐷𝑅−𝐵𝐻
Output : (𝑇𝑘

𝑖
, 𝑝𝑘

𝑖
); (0 ≤ 𝑖 ≤ 𝑀 ; 0 +𝑤 ≤ 𝑘 ≤ 𝑇 −𝑤)

Collect
ˆ
𝚯𝐺𝐿 - (Equation 3);

Construct each 𝑯𝑖 - (Equations 4 and 5);

for 0 +𝑤 ≤ 𝑘 ≤ 𝑇 −𝑤 , with step-size 𝑠 do
Partition 𝑿𝐿 = 𝑿 (𝑘−𝑤) :𝑘 , 𝑿

𝑅 = 𝑿 (𝑘+1) :(𝑘+𝑤) ;
Estimate 𝜶𝐴

from 𝑿 (𝑘−𝑤) :(𝑘+𝑤) - (Equation 11);

for 0 ≤ 𝑖 ≤ 𝑀 do
Estimate 𝛼𝐿

𝑖
, 𝛼𝑅

𝑖
from 𝑿𝐿,𝑿𝑅

- (Equation 11);

Calculate 𝑇𝑘
𝑖
- (Equations 11 and 12);

Calculate 𝑝𝑘
𝑖
as 𝜒2 (𝑇𝑘

𝑖
, 2);

end
Adjust 𝒑𝒌

with FDR-BH(𝛼𝐹𝐷𝑅−𝐵𝐻 ,𝒑𝒌
);

end

window is given by

𝑊 𝑘
𝑖 =

sup

𝜶𝐴∈R𝑀

∏𝑇
𝑡=0 𝑓 (𝑿𝑡 ,𝜶𝐴)

sup

𝛼𝐿
𝑖
,𝛼𝑅

𝑖
∈R𝑀

∏𝑘
𝑡=0 𝑓 (𝑿𝑡 ,𝜶𝐴

−𝑖 ∪ 𝛼𝐿
𝑖
)∏𝑇

𝑡=𝑘+1 𝑓 (𝑿𝑡 ,𝜶𝐴
−𝑖 ∪ 𝛼𝑅

𝑖
)

(11)

Where 𝑓 (𝑿𝑡 ,𝜶 ) is given in Equation 7, and 𝜶𝐴
−𝑖 indicates the ex-

clusion of the 𝑖th coefficient of 𝜶𝐴
from the set. Our test statistic is

calculated as

𝑇𝑘
𝑖 = −2𝑙𝑛(𝑊 𝑘

𝑖 ) (12)

To identify candidate changepoints, we take a simple sliding

window approach with a window size𝑤 and stepsize 𝑠 , and repeat-

edly perform this testing process in a temporally ordered manner

to collect test statistics𝑊 𝑘
𝑖
for all 𝑖 = 0, ..., 𝑀 and all 𝑘 = 0, ...,𝑇 on

the full data 𝑿 = {𝑿0, ...,𝑿𝑇 }. Our algorithm can be applied in an

online or offline setting, under the assumption that the changepoint

lies within the range [0 + 𝑤,𝑇 − 𝑤]. In both settings, we would

identify a change if 𝑇𝑘
𝑖

≥ 𝜏 , for some threshold 𝜏 .

FollowingWilks’ theorem,we use the chi-squared approximation

to compute empirical p-values for all 𝑖 . Due to multiple hypothesis

testing, we adjust these𝑀 p-values at each candidate point 𝑘 using

the Benjamini-Hochberg[6] False Discovery Rate procedure (FDR-

BH) and perform the thresholding based on the desired FDR-BH

significance level 𝛼𝐹𝐷𝑅−𝐵𝐻 . In the offline setting, assuming a single

changepoint is present in any given window partitioning of the

data, we can simply check the maximal values of the test statistic

curve, spaced at least 2𝑤 apart. For an online application, we slide

the window forward in time and compute the test statistic each

time, but we return a detected changepoint if ever we exceed the

significance level. See Algorithm 1 for an example application of

the method to data with no returns at detected changepoints.

4 RESULTS AND DISCUSSION
4.1 Simulations
To assess the performance of our algorithm, we generate a suite of

simulated changepoints and compare to the differential network
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Figure 1: ROC curves on simulated matrix models (top) and empir-

ical Runtime Comparison (bottom).

change detection algorithm from [30][12]. Both implementations

are in Python, and wemake use of rpy2
1
to interface with scalreg

2

in R for estimation in [30]. We utilize two matrix models from

[30], the Cholesky decomposition, and simulations from the linear

precision model given by Equation 2. These models are summarized

as follows. First, let 𝑫𝑝×𝑝 = diag(Uniform(0.5, 2.5)).

Model 1. 𝚯∗
𝑝×𝑝 = 𝜃∗

𝑖, 𝑗
where𝜃∗

𝑖,𝑖
= 1;𝜃∗

𝑖,𝑖+1 = 𝜃∗
𝑖+1,𝑖 = 0.6;𝜃∗

𝑖,𝑖+2 =

𝜃∗
𝑖+2,𝑖 = 0.3; and 𝜃∗

𝑖, 𝑗
= 0 otherwise. Let 𝚯1 = 𝑫

1

2𝚯
∗𝑫

1

2 .

Model 2. 𝚯∗
𝑝×𝑝 = 𝜃∗

𝑖, 𝑗
where𝜃∗

𝑖,𝑖
= 1;𝜃∗

𝑖, 𝑗
= 0.8×Bernoulli(1, 0.05)

for 𝑖 < 𝑗 ; and 𝜃∗
𝑗,𝑖

= 𝜃∗
𝑖, 𝑗
. Let 𝚯2 = 𝑫

1

2 (𝚯∗ + 𝛿𝑰 )/(1 + 𝛿)𝑫
1

2 , where

𝛿 = |𝜆𝑚𝑖𝑛 (𝚯∗) | + 0.05.

To simulate a change in Models 1 and 2, we follow the procedure

in [30] and create 𝑼𝑝×𝑝 as an upper triangular matrix with 4 unique

non-zero entries randomly sampled from above the diagonal, and

reflected for symmetry. The magnitude of each of these values is

randomly and uniformly sampled from the ranges

[−2𝜔𝑙𝑜𝑔( 𝑝
𝑛
)
1

2 ,−𝜔𝑙𝑜𝑔( 𝑝
𝑛
)
1

2 ] ∪ [𝜔𝑙𝑜𝑔( 𝑝
𝑛
)
1

2 , 2𝜔𝑙𝑜𝑔( 𝑝
𝑛
)
1

2 ] (13)

Where 𝜔 = max(diag(𝚯)). We create 𝚯
1 = 𝚯 + 𝛿𝐼,𝚯2 = 𝚯 +

𝑼 + 𝛿𝑰 , with 𝛿 = |𝜆𝑚𝑖𝑛 (𝚯∗) | + 0.05. Then, we sample data from

N(0, (𝚯1)−1) and N(0, (𝚯2)−1).

Model 3. 𝑳𝑝×𝑝 = tril(random pos-def matrix), where tril(𝑨) in-
dicates the lower-triangle of𝑨. Let𝚯1 = 𝑳𝑳⊤. We randomly sample

2 unique entries in the lower triangle of 𝑳 and add a magnitude

1
https://rpy2.github.io/

2
https://cran.r-project.org/web/packages/scalreg/

𝜏 to the entries sampled as in Equation 13 with 𝑛 = 50, to create

𝑳̃; 𝚯2 = 𝑳̃𝑳̃⊤. Likewise, we sample data from N(0, (𝚯1)−1) and
N(0, (𝚯2)−1).

Model 4. Using the model𝚯 =
∑𝑀
𝑖=0 𝛼𝑖 ·𝑯𝑖 , we randomly sample

𝜶 = Uniform(0, 1, 𝑀), specify {𝑯0, ...,𝑯𝑀 } by sampling 𝑨𝑝×𝑝 =

(spd matrix), and randomly populate each 𝑯𝑖 with ⌊ 𝑝

𝑀
⌋ entries

each, in the same locations as 𝑨, yielding 𝚯1
. Then, we increase or

decrease a randomly selected 𝛼𝑖 by the scale 0.8, yielding 𝚯
2
. We

sample data from N(0, (𝚯1)−1) and N(0, (𝚯2)−1). We let𝑀 scale

with the dimensionality, with𝑀 = [5, 10, 15].
In all simulations, we perform window-to-window comparisons

of size 𝑤 = 100 averaged over 50 seeds to calculate ROC curves,

shown in Figure 1 (top), and define a true positive for our algorithm

by taking the maximum value of Equation 12 over all 𝑖 , which we

compare to the global test from [30]. We simulate dimensionality

𝑝 = [30, 50, 100] for ROC, and 𝑝 = [6, 10, 20, 30, 50, 100] for runtime,

each with 50 unique seeds, and perform an identical simulation pro-

cess for data containing no changepoints from each model. In our

algorithm, for models Model 1, 2, and 3, we set𝑀 = [10, 15, 20] in
scaling with the dimensionality. For Model 4, we set𝑀 as specified,

but with no access to the simulation settings of 𝜶 or {𝑯0, ...,𝑯𝑀 }.
We let 𝜆 = 0.1 for the stability of lasso. Lastly, we include a runtime

comparison in Figure 1 (bottom) of a single window-to-window

comparison averaged over the seeds at each dimension, highlight-

ing the relative performance of our method.

4.2 Real World Case Studies
We apply our algorithm to three real-world datasets as described

below. We make the assumptions of a single changepoint in any

window-to-window comparison, and that thresholded (zero) entries

of𝚯𝐺𝐿 indicate interactions that we do not wish to explicitly model.

Earthquake Detection. UNAVCO3
streams real-time Global Nav-

igation Satellite System (GNSS) data which can be used to detect

travelling ionosphere disturbances due to earthquakes. We include

results from two case studies. The first contains transmissions of

detrended total electron content (dTEC) from 5 stations on the

Aleutian Islands to a passing satellite, and are used to detect the oc-

currence of the Alaskan earthquake on January 23, 2018. The second

contains readings from 6 stations in Tohoku, Japan for the earth-

quake that took place on March 11, 2011. Although these datasets

are low dimensional, they serve to illustrate the localization aspects

of our algorithm. We verified our results with domain experts for

this data.

We present test statistic results for our algorithm applied to the

Alaskan earthquake with 𝑀 = 2, 𝜆 = 0.1,𝑤 = 50, 𝑠 = 1, and the

training window comprising the first 10% of the data in Figure 2

(top). For this event, we separate an additional matrix 𝑯2, which

contains all the diagonal entries, to illustrate the isolation of the

(inverse) variance changes. One set of two stations (those in Cluster

1) are close in spatial location and thus do not experience a partial

correlation change during the earthquake, as these two stations are

affected in tandem. In contrast, the 3 sensors in Cluster 0 experience

such a change. Our results for the Tohoku earthquake with 𝑀 =

3, 𝜆 = 0.1,𝑤 = 50, 𝑠 = 1, and the training window comprising the

3
https://www.unavco.org/data/gps-gnss/real-time/real-time.html
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Figure 2: Test Statistics for Alaska 2018 (left) and Tohoku 2011

(right) earthquakes with earthquake start/end times. Two peaks

occur approximately when the earthquake begins and ends.

first 25% of the data are similarly shown in Figure 2 (bottom). Here,

we do not separate the diagonal entries.

Wildfire Detection. The PurpleAir sensor network
4
uses laser

counters to measure airborne particulate matter. We use the mass

concentrations of PM2.5 registered by the sensors to detect wildfire

presence. While wildfires cause a sudden shift in the mean of the

PM2.5, we observe empirically that wildfires also cause sudden,

abnormal correlations between the sensors present in the smoke

fallout across spatial distance.

We focus on the Holiday Farm fire that took place east of Eu-

gene, OR in September, 2020. Our data consists of the date range

January 1, 2020 - December 31, 2021, with a sampling rate of 15

minutes, with 14 sensors that provided consistent readings through

this region; we did not use data from other sensors that had severe

data quality issues. We use the period up through July 2020 as our

training data for preprocessing and specification of {𝑯0, ...,𝑯𝑀 }.
We process the data by linearly interpolating missing sensor read-

ings, adding a small 𝜖 value to readings of PM2.5 = 0, and taking

the log-transformation of the original data. We scale this result

to have mean 0, variance 1 using the summary statistics from the

training window. Overall, clusters for {𝑯0, ...,𝑯𝑀 } correspond to

spatial locations. We isolate the summer period for generating test

curves using the sliding window approach, without breaks. For this

dataset, we choose𝑀 = 8, 𝜆 = 0.05,𝑤 = 100, 𝑠 = 1.

Figure 3 plots the test statistic curves from two distinct clusters

of sensors. Cluster 1 consists of three sensors - two of which are in

close proximity (Crescent Park) - and one a slight distance away

(Springfield HS). Cluster 2 consists of two sensors (Office and Office

B). The peak in the statistic for Cluster 1 is far more pronounced,

and aligns with the major onset of smoke drifting into the region.

We hypothesize that Cluster 1 is able to capture this change due

to the delay in smoke arrival, which modifies the pairwise, off-

diagonal entries of 𝑯1 between the two sensors located farther

north, and the single sensor in this cluster which is farther south.

Detection of the COVID-19 Pandemic from Stock Prices. We con-

clude with an example of our algorithm applied to a (nearly) global

changepoint problem, to highlight that we both detect the pan-

demic, and are able to isolate interesting behaviors of individual

dimensions, without the need for fully local methods. Here, we

collect a set of closing prices of 41 stocks across various industries:

[’AAL’, ’AAPL’, ’ALK’, ’AMZN’, ’ASML’, ’AXP’, ’BA’, ’CLX’, ’CSCO’, ’DB’, ’DIS’, ’ETSY’,

’FB’, ’GIS’, ’GOOG’, ’INTC’, ’JPM’, ’K’, ’LUV’, ’MA’, ’MCHP’, ’MS’, ’MSFT’, ’NCLH’,

4
https://www2.purpleair.com/

Figure 3:Holiday Farm Fire test statistics for two clusters of sensors

(left) and remaining clusters (right). The highest peak generally

occurs at the fire onset.

’NFLX’, ’NVDA’, ’NXPI’, ’ON’, ’ORCL’, ’PEP’, ’PFE’, ’PG’, ’PYPL’, ’RCL’, ’SPY’, ’STM’,

’TSLA’, ’TSM’, ’TWTR’, ’VZ’, ’WFC’].

This data is collected from February 22, 2017 - February 19, 2022,

at daily intervals, using parameter settings𝑀 = 10, 𝜆 = 0.5,𝑤 = 100,

and 𝑠 = 1. We preprocess the data by taking the logarithm of the

daily stock returns, followed by standard mean 0 scaling. We use

the first 40% of the data as the training data window.

Figure 4 shows a comparison of two test statistic curves, one

containing two clusters, and the other containing all others. Nearly

all curves have a pronounced peak in at January 8, 2020. This

aligns with the fact that January 8, 2020 was the first date the

Center for Disease Control announced a health advisory regarding

COVID-19. In Figure 4 (left), the lower curve in red (’CLX’) does

not have as dramatic a shift on January 8 as the blue curve (’MSFT’).

The Clorox company (’CLX’) was placed in its own cluster during

construction of {𝑯0, ...,𝑯𝑀 }. Our algorithm’s results suggest it was

less affected by the COVID-19 pandemic overall for the 𝑤 = 100

window positioning on January 8, 2020. Figure 5 draws a vertical

line for this date and illustrates the greater degree of spread for

the log-returns of ’MSFT’ (Microsoft) immediately after January 8

compared to ’CLX’.

To summarize, our algorithm was able to detect both the general

pattern of consistent changes present at the start of the COVID-19

pandemic, and our cluster localization process provided a conve-

nient and interpretable format for identifying a surprising pattern

in this data. This highlights one strength of our approach to local-

ization when analyzing changepoints of this nature.

5 CONCLUSION
We have shown that a linear decomposition of the precision matrix

can be used to identify groups of features that are responsible

for the change in a precision matrix. In addition, we have shown

that the running time of our approach is faster than a fully local

method that inspects all entries of the precision matrix. For future

work, we will improve the localization by drilling down further

into the clusters of features to identify smaller subsets of features

responsible for the change, perform detection time analysis over

different thresholds, collect additional high dimensional real-world

datasets for comparison with [30] and [18], and we will improve

the running time and estimation method of our approach.
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Figure 4: Test statistics for two stock clusters (left) and the remain-

ing clusters (right). Notice that the singular cluster CLX in (left),

unlike the other clusters, does not have a pronounced spike on Jan-

uary 8, 2020 that would be consistent with a change in precision.

Figure 5: Log Returns of CLX (left) and MSFT (right), with the

most common peak of January 8, 2020.
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