FUNDAMENTALS OF ATMOSPHERIC SCIENCE, FALL 2016

COURSE: ... EAS 0309
ROOM/TIME: .. MR 044, M/W 2-3:15
INSTRUCTOR: ... James Booth
OFFICE: ... Marshak 927
OFFICE HOURS: ... After class and/or by appmt.
PHONE: ... 212-650-6471
EMAIL: ... jbooth@ccny.cuny.edu

http://www.sci.ccny.cuny.edu/~jfbooth/EAS0309

Prerequisites: Math 20300 and Physics 20700, or equivalent.
Description: An introductory survey to the field of Atmospheric Science, with special attention given to thermodynamics and dynamics. Atmospheric science is a complex field of study that builds on physics, chemistry and math, hence the prerequisites. This course covers rudimentary components of chemistry and cloud microphysics and in depth details of thermodynamics and dynamics. This course is intended to provide an introductions and solid foundation for students interested in atmospheric physics.

Grading:

- 4 Exams (4 X 20%) 80%
- 4 Homework Assignments (5% each) 20%
- Class Participation 5%

Notes: One homework, or the class participation can be dropped. No final exam.
Graduate students: homework is replaced by special assignment, see additional handout.

Course Outline (see webpage for precise dates and book pages):

- Week 1: Overview of atmospheric science and the climate system.
- Weeks 2-6: Thermodynamics
- Weeks 7-10: Chemistry, Cloud Microphysics
- Weeks 11-14: Dynamics and Weather systems.

Expectations/Rules: Be respectful of your fellow students and the professor; do not act out in a way that prevents others from learning or dissuades others from participating.

Plagiarism, dishonesty, or cheating in any portion of the work required for this course will be punished according to City College regulations. Read more about the CCNY Policy on Academic integrity at: http://www1.ccny.cuny.edu/upload/academicintegrity.pdf

Learning Outcomes:

1. Describe atmospheric composition and structure (temperature, pressure, wind…).
2. Apply atmospheric thermodynamic principles to analyze air motion.
3. Use moist thermodynamics to understand saturated ascent.
4. Apply microphysical laws to distill the processes in cloud, rain, and ice formation.
5. Understand geostrophic and thermal wind and apply them to explain atmospheric general circulation in the mid-latitudes.
6. Apply knowledge learned in this class to explain extratropical cyclones, hurricanes, and convective storms.