Nanotechnology and Biomaterials


Nanotechnology and Biomaterials

Nanotechnology and Biomaterials research ranges from the development of microfluidic devices and tissue engineered constructs to smart biomaterials and targeted drug delivery techniques for clinical application.  Additionally, these systems are being used to understand cellular behavior, with respect to differentiation and migration, and macroscopic cell-tissue interactions.

The following laboratories are within our Nanotechnology and Biomaterials focus area:


Vascular and Orthopedic Tissue Engineering Laboratory

The Vascular and Orthopedic Tissue Engineering Laboratory is focused on cellular and tissue responses to fluid mechanical forces and biochemical cues in the context of vascular disease and orthopedic tissue engineering.  Their interdisciplinary work incorporates biology, materials science and engineering toward novel therapeutic strategies to improve the health of individuals suffering with sickle cell disease and diseases associated with cartilage and bone damage.  Models recapitulating the environment within the body are analyzed in order to better understand the pathophysiology of such diseases and the appropriate strategies for treatment. Complementary animals models are used to bridge translation of such findings to human clinical practice.  


Microcirculation Laboratory

Principal Investigator: Dr. Bingmei Fu

The Microcirculation Laboratory focuses on structure-function of the microvessel wall in health and disease. Current research includes the endothelial surface glycocalyx as a barrier to cancer cell adhesion and as a flow sensor; transvascular, transcellular and interstitial transport for water and solutes; signal transduction in endothelial cells under mechanical, chemical and physical stimuli; and regulation of the blood-brain barrier (BBB) by ultrasound and electrical stimuli. Intravital, confocal and multi-photon microscopy is employed to quantify the microvessel permeability, nitric oxide and Ca2+ production at individual microvessels in vivo. Stochastic Optical Reconstruction Microscopy (STORM) and confocal microscopy are used to characterize the nano-micro structure of the microvessel wall and endothelial monolayers. The observed information serves to develop and test mathematical models of microvascular transport in order to elucidate the underlying mechanisms.  The clinical applications are to inhibit tumor metastasis by strengthening the microvessel wall integrity and drug delivery to brain through the blood-brain barrier and cerebrospinal fluid.


Connective Tissue Engineering Laboratory

Principal Investigator: Dr. Steven B. Nicoll

The Connective Tissue Engineering Laboratory incorporates the principles of cell and molecular biology, materials science, and mechanical engineering toward the development of living tissue surrogates for connective tissue restoration.  Plant derived materials are being manipulated for a variety of applications such as development of engineered cartilaginous tissue constructs and the creation of injectable fillers for facial reconstruction.  Within the tissue engineering focus, major efforts are being made to understand how environmental stimuli, both physical and biochemical, regulate the differentiation of novel progenitor cells such as human mesenchymal stem cells, toward specialized connective tissue cell lineages, such as chondrocytes or intervertebral disc cells. The cellulose based injectable filler platform is being explored as a mechanism for targeted drug delivery to aid in soft tissue healing, as well. 


Microfluidic HTS Technology and Tissue Engineering Laboratory

Principal Investigator: Dr. Sihong Wang

The Microfluidic HTS Technology and Tissue Engineering Laboratory is directed at the development of three dimensional microfluidic devices to study signaling pathways (e.g. apoptosis and inflammation) for the high throughput screening (HTS) of potential drugs and to establish a platform for personalized medicine searching. The second major focus is to investigate thermal effects on tissue regeneration using stem cells and explore the role of heat shock proteins in tissue development, injury protection and repair.  Such mechanisms are being investigated in the regenerate of bone and cartilage tissues. Meanwhile, the lab is interested in the development of sub-cellular thermal sensors.


Immune Nanomedicine Laboratory

Principal Investigator: Dr. Ryan M. Williams

The Immune Nanomedicine Laboratory designs, characterizes, and deploys novel nanotechnologies to treat and diagnose diseases. Specifically, the lab focuses on disrupting and detecting immune and inflammatory processes in kidney disease and cancer. One focus of the lab is to develop kidney-targeted polymeric nanoparticles as therapeutic tools for renal diseases. Another area of concentration is developing ex vivo and implantable optical nanosensor devices using single-walled carbon nanotubes (SWCNT) as diagnostic tools for cancers and related diseases. Each of these areas of concentration combine rational material design, using materials as tools to understand biological processes in disease, and translational aspects including efficacy, pharmacology, and safety.


Last Updated: 12/07/2020 15:24