Vinod Menon


Main Affiliation


Areas of Expertise/Research

  • Nano and Micro Photonics
  • Photonics
  • Quantum Technologies


Center for Discovery and Innovation



Vinod Menon

Vinod Menon


2020 - Fellow, The Optical Society of America

2019 - Present: Chair, Dept. of Physics, City College of New York

2014 - Present: Professor, Dept. of Physics, City College of New York and Grad. Center of CUNY

2014 - 2016: Director, CUNY Center for Advanced Technology in Photonics

2012 - 2013: Visiting Scholar, Research Laboratory for Electronics, MIT

2010 - 2014: Associate Professor, Dept. of Physics, Queens College and Grad. Center of CUNY

2004 - 2010: Assistant Professor, Dept. of Physics, Queens College and Grad. Center of CUNY

2004 - 2006: Visiting Researcher, Princeton University

2003 - 2004: Research Staff Member, Princeton University

2001 - 2003: Lucent Bell Labs Post-Doctoral Fellow in Photonics, Princeton University



2001: Ph.D. in Physics, University of Massachusetts
1995: M.Sc. in Physics (Quantum Optics), University of Hyderabad, India

Research Interests

Research in the Laboratory for Nano and Micro Photonics (LaNMP) can be best summarized as exploration of light-matter interaction at the nanosale. We are interested in exploring emergent material properties (classical and quantum) that arise when matter is subjected to artificially engineered electromagnetic environments. The goal is to develop a largely unexplored strategy for realizing programmable matter based on coherently combining material excitations with light – realizing half-light half-matter quasiparticles. We hope to answer fundamental questions related to ultimate limits of controlling light-matter interaction and apply these concepts in applications such as quantum simulators, energy harvesting, ultrafast light emitters, and catalysis.


Ongoing research projects:

- Programmable quantum matter based on polaritonic (half-light half-matter quasiparticles) lattices in organic and 2D materials for quantum simulation (NSF Quantum Initiative)
- Strong light-matter coupling in 2D excitonic materials - towards condensation at elevated temperatures, valley exciton polaritons, and control of polariton flow (NSF Quantum Initiative, ARO)
- Control of molecular transport, energetics and reactivity through strong coupling of electronic and vibrational transitions in organic molecules to microcavities (DOE)
- Deterministic quantum emitters using van der Waals materials (NSF ECCS)
- Hyperbolic media for enhancing light-matter interaction (ARO)
- Interface states and excitons in heterostructures of 2D and organic and inorganic hybrid materials (NSF DMR

More details about my research group can be found at:



(Selected recent publications)

  • "The role of long lived excitons in the dynamics of strongly coupled molecular polaritons," B. Liu, V. M. Menon and M. Y. Sfeir, ACS Photonics 7, 2292 (2020)
  • "A room temperature polariton LED based on monolayer WS2,” J. Gu, B. Chakraborty, M. Khatoniyar, and V. M. Menon, Nature Nanotechnology (2019)
  • "Near deterministic activation of room temperature quantum emitters in hexagonal boron nitride," Optica 5, 1128 (2018)
  • "Optical control of room temperature valley polaritons," Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghanemi, S. K-Cohen, and V. M. Menon, Nature Photonics 11, 491 (2017)
  • "Photonic hypercrystals for control of light matter interactions," T. Glafsky, J. Gu, E. Narimanov and V. M. Menon, PNAS 14, 5125 (2017).
  • “Strong light-matter coupling in two-dimensional atomic crystals,” X. Liu, T. Galfsky, Z. Sun, F. Xia, E-C. Lin, Y-H Lee, S. Kena-Cohen, and V. M. Menon, Nature Photonics 9, 30 (2015).
  • “Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction,” T. Galfsky, H. N. S. Krishnamoorthy, W. Newman, E. E. Narimanov, Z. Jacob., and V. M. Menon, Optica 2, 62 (2015).
  • “Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity,” M. Slootsky, X. Liu, V. M. Menon* and S. R. Forrest*, Phys. Rev. Lett. 112, 076401 (2014).
  • “Visualization of Exciton Transport in Ordered and Disordered Molecular Solids,” G. M. Akselrod, P. B. Deotare, N. J. Thompson, J. Lee, W. A. Tisdale, M. A. Baldo, V. M. Menon, and V. Bulovic, Nature Comm. 5, 3646 (2014)
  • “Topological transitions in metamaterials,” H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336, 205 (2012)


For complete list of publications - please visit