Urs Jans

Environmental Organic Chemistry

Main Affiliation

Chemistry and Biochemistry

Building

Marshak Science Building

Office

1218

Phone

212-650-8369

Fax

212-650-6107

Urs Jans

Education

Dipl., ETH Zurich, Switzerland
Ph.D., EAWAG/ETH Zurich, Switzerland

Courses Taught

Chem 40700/A1200: Environmental Organic Chemistry
Chem 10301: General Chemistry 1

Research Interests

My research program at CCNY is addressing questions concerning aquatic environmental organic chemistry, with a focus on the mechanisms through which organic contaminants undergo abiotic transformations in natural aquatic environment (freshwater, groundwater, seawater). A special interest lies in the role of reduced sulfur species and their reaction with organic contaminants.

Publications

X. Zhang, J.H. Wilson, A. Lawson, E.G. Hohenstein, U. Jans, 2019, Stereoisomer specific reaction of hexabromocyclododecane with reduced sulfur species in aqueous solutions. Chemosphere, 226, 238-245,

https://doi.org/10.1016/j.chemosphere.2019.03.134

O. Hodek, U. Jans, L. Yang, T. Krizek, 2018, Chlorpyrifos-methyl oxon hydrolysis and its monitoring by HPLC-MS/MS. Monatshefte für Chemie – Chemical Monthly, 149, 1515-1519,

https://doi.org/10.1007/s00706-018-2219-6

S. Christian, P. Pradhan, U. Jans, 2018, Investigation of the Nucleophilic Attack of Dichlorvos by Reduced Sulfur Species Using 1H NMR. J. Agric. Food Chem., 66, 424-431.

http://dx.doi.org/10.1021/acs.jafc.7b04749

U. Jans, 2016. Emerging Brominated Flame Retardants in Sediments and Soils: a Review. Current Pollution Reports, 2, 213-223.

http://dx.doi.org/10.1007/s40726-016-0041-5

D. Saint-Hilaire, U. Jans, 2013. Reactions of three halogenated organophosphorus flame retardants with reduced sulfur species. Chemosphere, 93, 2033-2039.

http://dx.doi.org/10.1016/j.chemosphere.2013.07.028

L. Yang, X. Li, P. Zhang, M. Melcer, Y. Wu, U. Jans, 2012. Concentrations of DDTs and dieldrin in Long Island Sound sediment, Journal of Environmental Monitoring, 14, 878-885.  

http://dx.doi.org/10.1039/C2EM10642F

K.W. Lo, S.C. Saha-Roy, U. Jans, 2012. Investigation of the reaction of hexabromocyclododecane with polysulfide in methanol/water solutions, Chemosphere, 87, 158-162. 

http://dx.doi.org/10.1016/j.chemosphere.2011.12.008

D. Saint-Hilaire, K.Z. Ismail, U. Jans, 2011. Reactions of tris(2-chloroethyl)phosphate with reduced sulfur species, Chemosphere, 83, 941-947.

http://dx.doi.org/10.1016/j.chemosphere.2011.02.040

M. Seredych, J. Lison, U. Jans, T.J. Bandosz, 2009. Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel. Carbon, 47, 2491-2500.

http://dx.doi.org/10.1016/j.carbon.2009.05.001

G. F. Talu, V. Diyamandoglu, U. Jans, 2007. Oxalate ion decomposition under UV light from low pressure mercury vapor lamps. Ozone: Science and Engineering, 29, 473-483.

http://dx.doi.org/10.1080/01919510701615672

L. Yang, X. Li, J. Crusius, U. Jans, M. E. Melcer, P. Zhang, 2007. Persistent chlordane concentrations in Long Island Sound sediment: Implications for chlordane, 210Pb, and 137Cs depth profiles. Environ. Sci. Technol. 41, 7723-7729.

http://dx.doi.org/10.1021/es070749a

Q. Gan, U. Jans, 2007. Nucleophilic reaction of phorate and terbufos with reduced sulfur species under anoxic conditions. Journal of Agricultural and Food Chemistry, 55, 3546-3554.

http://dx.doi.org/10.1021/jf063296m

X. Li, L. Yang, U. Jans, M.E. Melcer, P. Zhang, 2007. Lack of enantioselective microbial degradation of chlordane in Long Island Sound Sediment. Environ. Sci. Technol., 41, 1635-1640.

http://dx.doi.org/10.1021/es062125v

Q. Gan, R.M. Singh, T. Wu, U. Jans, 2006. Kinetics and mechanism of degradation of dichlorvos in aqueous solution containing reduced sulfur species. Environ. Sci. Technol.,  40, 5717-5723.

http://dx.doi.org/10.1021/es060485c

T. Wu, Q. Gan, U. Jans, 2006. Nucleophilic substitution of phosphorothionate ester pesticides with bisulfide (HS-) and polysulfides (Sn2-), Environ. Sci. Technol. 40, 5428-5434.

http://dx.doi.org/10.1021/es060711i

Q. Gan, U. Jans. Reaction of thiometon and disulfoton with reduced sulfur species in simulated natural environment, 2006. J. Agric. Food Chem., 54, 7753-7760.

http://dx.doi.org/10.1021/jf061019+

X. Guo; U. Jans, 2006. Kinetics and mechanism of the degradation of methyl parathion in aqueous hydrogen sulfide solution: Investigation of natural organic matter effects. Environ. Sci. Technol., 40, 900-906.

http://dx.doi.org/10.1021/es051453c

T. Wu, U. Jans, 2006. Nucleophilic substitution reactions of chlorpyrifos-methyl with sulfur species. Environ. Sci. Technol., 40, 784-790.

http://dx.doi.org/10.1021/es051468a

Q. Gan, R.M. Singh, U. Jans, 2006. Degradation of naled and dichlorvos promoted by reduced sulfur species in well-defined anoxic aqueous solutions. Environ. Sci. Technol., 40, 778-783.

http://dx.doi.org/10.1021/es051482n

U. Jans, M. H. Miah, 2003. Reaction of chlorpyrifos-methyl in aqueous hydrogensulfide/bisulfide solutions. J. Agric. Food Chem., 51, 1956-1960.

http://dx.doi.org/10.1021/jf020955w

L. A. Totten, U. Jans, A. L. Roberts, 2001. Alkyl bromides as mechanistic probes of reductive dehalogenation: Reduction of vicinal dibromide stereoisomeres with zero-valent metals. Environ. Sci. Technol., 35, 2268-2274.

http://dx.doi.org/10.1021/es0010195

U. Jans, J. Hoigné, 2000. Atmospheric water: transformation of ozone into OH-radicals by sensitized photoreactions or particulate carbon. Atmos. Environ., 34, 1069-1085.

http://dx.doi.org/10.1016/S1352-2310(99)00361-1

U. Jans, J. Hoigné, 1998. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone: Science and Engineering, v. 20, pp. 67-90.

http://dx.doi.org/10.1021/10.1080/01919519808547291

S. Canonica, U. Jans, K. Stemmler, J. Hoigné, 1995. Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol., v. 29, pp. 1822-1831.

http://dx.doi.org/10.1021/es00007a020